optimum/quanto/nn/qconv2d.py (34 lines of code) (raw):

# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional import torch from ..tensor import Optimizer, qtype from .qmodule import QModuleMixin, register_qmodule __all__ = ["QConv2d"] @register_qmodule(torch.nn.Conv2d) class QConv2d(QModuleMixin, torch.nn.Conv2d): @classmethod def qcreate( cls, module, weights: qtype, activations: Optional[qtype] = None, optimizer: Optional[Optimizer] = None, device: Optional[torch.device] = None, ): return cls( in_channels=module.in_channels, out_channels=module.out_channels, kernel_size=module.kernel_size, stride=module.stride, padding=module.padding, dilation=module.dilation, groups=module.groups, bias=module.bias is not None, padding_mode=module.padding_mode, dtype=module.weight.dtype, device=device, weights=weights, activations=activations, optimizer=optimizer, ) def forward(self, input: torch.Tensor) -> torch.Tensor: return self._conv_forward(input, self.qweight, self.bias)