optimum/quanto/tensor/optimizers/affine_optimizer.py (29 lines of code) (raw):

# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, Tuple import torch from ..grouped import group from ..qtype import qtype from .optimizer import Optimizer __all__ = ["AffineOptimizer"] class AffineOptimizer(Optimizer): def __call__( self, base: torch.Tensor, qtype: qtype, axis: int, group_size: Optional[int] = None, zeropoint: bool = False, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Args: base (`torch.Tensor`): the weight Tensor to quantize qtype (`quanto.qtype`): The target quantization type axis ('int`): The quantization axis (0 or -1) group_size (`Optional[int]`): The quantization group size zeropoint (`bool`): Allow an exact representation of zero. If True, the shifts are stored as integer instead of float, which results in a slightly smaller model, but might also reduce the model performance. Defaults to False. Returns: A tuple of scale, shift Tensor. """ if axis not in [0, -1]: raise ValueError("axis parameter must be 0 (first axis) or -1 (last axis)") if group_size is not None: base = group(base, axis, group_size) if axis is not None and base.shape[axis] == 1: axis = None scale, shift = self.optimize(base, qtype, axis) assert scale.dtype == base.dtype assert shift.dtype == base.dtype if zeropoint: # Round shift to make sure zero can be represented exactly using 'shift' as quantized value shift = torch.clamp(torch.round(shift / scale), 0, 2**qtype.bits - 1).to(torch.uint8) return scale, shift def optimize(self, base: torch.Tensor, qtype: qtype, axis: int) -> Tuple[torch.Tensor, torch.Tensor]: raise NotImplementedError