optimum/quanto/tensor/optimizers/hqq_optimizer.py (54 lines of code) (raw):
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Tuple, Union
import torch
from ..qtype import qtype
from ..weights import quantize_weight
from .max_optimizer import MaxOptimizer
__all__ = ["HqqOptimizer"]
# Shrinking operator
def shrink_lp_op(x: torch.Tensor, beta: float, lp_norm: float) -> torch.Tensor:
if lp_norm == 1:
return torch.sign(x) * torch.nn.functional.relu(torch.abs(x) - 1.0 / beta)
else:
return torch.sign(x) * torch.nn.functional.relu(
torch.abs(x) - (1.0 / beta) * torch.pow(torch.abs(x), lp_norm - 1)
)
class HqqOptimizer(MaxOptimizer):
"""Implementation of the HQQ algorithm
This is an implementation of the algorithm described in "Half-Quadratic Quantization of Large Machine Learning Models",
by Hicham Badri and Appu Shaji (https://mobiusml.github.io/hqq_blog/).
This is an adaption of the original implementation at https://github.com/mobiusml/hqq.
"""
def __init__(
self,
lp_norm: Optional[float] = 0.7,
beta: Optional[int] = 1e1,
kappa: Optional[float] = 1.01,
iters: Optional[int] = 20,
verbose: Optional[bool] = False,
) -> None:
self.lp_norm = lp_norm
self.beta = beta
self.kappa = kappa
self.iters = iters
self.verbose = verbose
def optimize(
self, base: torch.Tensor, qtype: qtype, axis: int
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
scale, shift = super().optimize(base, qtype, axis)
best_error = None
beta = self.beta
base_q = quantize_weight(base, qtype=qtype, axis=axis, scale=scale, shift=shift)
for i in range(self.iters):
error = base - base_q
if best_error is None:
best_error = float(torch.abs(base - base_q).mean())
if self.verbose:
print(f"Start error: {best_error:.6f}")
e = shrink_lp_op(error, beta, self.lp_norm)
mean_axis = 0 if axis == -1 else -1
hqq_shift = torch.mean(base_q._data * scale - (base - e), axis=mean_axis, keepdim=True)
base_q = quantize_weight(base, qtype=qtype, axis=axis, scale=scale, shift=hqq_shift)
mean_error = float(torch.abs(base - base_q).mean())
if self.verbose:
print(f"HQQ error at it #{i}: {mean_error:.6f}")
if mean_error < best_error:
best_error = mean_error
shift = hqq_shift
beta *= self.kappa
else:
break
return scale, shift