optimum/quanto/tensor/optimizers/symmetric_optimizer.py (16 lines of code) (raw):

# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional import torch from ..qtype import qtype from .optimizer import Optimizer __all__ = ["SymmetricOptimizer"] class SymmetricOptimizer(Optimizer): def __call__(self, base: torch.Tensor, qtype: qtype, axis: Optional[int] = None) -> torch.Tensor: if axis not in [None, 0, -1]: raise ValueError("axis parameter must be None, 0 (first axis) or -1 (last axis)") if axis is not None and base.shape[axis] == 1: axis = None scale = self.optimize(base, qtype, axis) assert scale.dtype == base.dtype return scale def optimize(self, base: torch.Tensor, qmax: float, axis: Optional[int] = None) -> torch.Tensor: raise NotImplementedError