optimum/quanto/tensor/qbits.py (39 lines of code) (raw):

# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from torch.autograd import Function from .grouped import ungroup from .packed import PackedTensor from .qtensor import QTensor __all__ = ["QBitsTensor"] class QBitsDequantizer(Function): @staticmethod def forward(ctx, t): if isinstance(t._data, PackedTensor): data = t._data.unpack() else: data = t._data shift = t._shift if not shift.dtype.is_floating_point: # Remove shift before multiplying by the scale data = data.to(torch.int8) - shift.to(torch.int8) if t.qtype.is_floating_point: # Upcast explicitly to the scale dtype dqt = t._scale * data.to(t._scale.dtype) else: dqt = t._scale * data if shift.dtype.is_floating_point: # Remove scaled shift dqt -= shift if t.axis is None: return dqt # Restore the original shape (if needed) return ungroup(dqt, axis=t.axis, orig_shape=t.shape) @staticmethod def backward(ctx, gO): return gO class QBitsTensor(QTensor): def __init__(self, qtype, axis, group_size, size, stride, data, scale, shift, requires_grad=False): super().__init__(qtype, axis) self._data = data self._scale = scale self._shift = shift self._group_size = group_size def __repr__(self): return f"{type(self).__name__}({self._data}, scale={self._scale}, shift={self._shift}, dtype={self.dtype})" def dequantize(self): return QBitsDequantizer.apply(self)