optimum/quanto/tensor/qbits.py (39 lines of code) (raw):
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from torch.autograd import Function
from .grouped import ungroup
from .packed import PackedTensor
from .qtensor import QTensor
__all__ = ["QBitsTensor"]
class QBitsDequantizer(Function):
@staticmethod
def forward(ctx, t):
if isinstance(t._data, PackedTensor):
data = t._data.unpack()
else:
data = t._data
shift = t._shift
if not shift.dtype.is_floating_point:
# Remove shift before multiplying by the scale
data = data.to(torch.int8) - shift.to(torch.int8)
if t.qtype.is_floating_point:
# Upcast explicitly to the scale dtype
dqt = t._scale * data.to(t._scale.dtype)
else:
dqt = t._scale * data
if shift.dtype.is_floating_point:
# Remove scaled shift
dqt -= shift
if t.axis is None:
return dqt
# Restore the original shape (if needed)
return ungroup(dqt, axis=t.axis, orig_shape=t.shape)
@staticmethod
def backward(ctx, gO):
return gO
class QBitsTensor(QTensor):
def __init__(self, qtype, axis, group_size, size, stride, data, scale, shift, requires_grad=False):
super().__init__(qtype, axis)
self._data = data
self._scale = scale
self._shift = shift
self._group_size = group_size
def __repr__(self):
return f"{type(self).__name__}({self._data}, scale={self._scale}, shift={self._shift}, dtype={self.dtype})"
def dequantize(self):
return QBitsDequantizer.apply(self)