optimum/quanto/tensor/qbytes.py (23 lines of code) (raw):
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from torch.autograd import Function
from .qtensor import QTensor
__all__ = ["QBytesTensor"]
class QBytesDequantizer(Function):
@staticmethod
def forward(ctx, t):
if t.qtype.is_floating_point:
# Upcast explicitly to the scale dtype
dqt = t._scale * t._data.to(t._scale.dtype)
else:
dqt = t._scale * t._data
return dqt
@staticmethod
def backward(ctx, gO):
# For autograd, dequantization is a no-op
return gO
class QBytesTensor(QTensor):
def __init__(self, qtype, axis, size, stride, data, scale, requires_grad=False):
super().__init__(qtype, axis)
self._data = data
self._scale = scale
def __repr__(self):
return f"{self.__class__}({self._data}, scale={self._scale}, dtype={self.dtype})"
def dequantize(self):
"""Differentiable dequantization function"""
return QBytesDequantizer.apply(self)