optimum/quanto/tensor/qbytes.py (23 lines of code) (raw):

# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from torch.autograd import Function from .qtensor import QTensor __all__ = ["QBytesTensor"] class QBytesDequantizer(Function): @staticmethod def forward(ctx, t): if t.qtype.is_floating_point: # Upcast explicitly to the scale dtype dqt = t._scale * t._data.to(t._scale.dtype) else: dqt = t._scale * t._data return dqt @staticmethod def backward(ctx, gO): # For autograd, dequantization is a no-op return gO class QBytesTensor(QTensor): def __init__(self, qtype, axis, size, stride, data, scale, requires_grad=False): super().__init__(qtype, axis) self._data = data self._scale = scale def __repr__(self): return f"{self.__class__}({self._data}, scale={self._scale}, dtype={self.dtype})" def dequantize(self): """Differentiable dequantization function""" return QBytesDequantizer.apply(self)