optimum/quanto/tensor/weights/marlin/permutations.py (26 lines of code) (raw):

# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import functools from typing import List, Tuple import torch from ..reordering import reorder, reverse __all__ = ["marlin_permute"] # https://github.com/IST-DASLab/marlin/blob/2f6d7c10e124b3c5fa29ff8d77d568bd7af3274c/marlin/__init__.py#L40C1-L68C54 @functools.cache def _get_perms() -> Tuple[List[int], List[int]]: perm = [] for i in range(8): perm.extend([i + 8 * j for j in range(8)]) perm_single = [] for i in range(4): perm_single.extend([2 * i + j for j in [0, 1, 8, 9, 16, 17, 24, 25]]) return perm, perm_single @functools.cache def _get_inverted_perms() -> Tuple[List[int], List[int]]: perm, perm_single = _get_perms() return reverse(perm), reverse(perm_single) def marlin_permute(t: torch.Tensor, reverse=False): perm, perm_single = _get_inverted_perms() if reverse else _get_perms() out_features = t.shape[1] if t.shape[0] == 1: reordered = reorder(t, perm_single) else: reordered = reorder(t, perm) return reordered.reshape((-1, out_features)).contiguous()