optimum/quanto/tensor/weights/marlin/permutations.py (26 lines of code) (raw):
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
from typing import List, Tuple
import torch
from ..reordering import reorder, reverse
__all__ = ["marlin_permute"]
# https://github.com/IST-DASLab/marlin/blob/2f6d7c10e124b3c5fa29ff8d77d568bd7af3274c/marlin/__init__.py#L40C1-L68C54
@functools.cache
def _get_perms() -> Tuple[List[int], List[int]]:
perm = []
for i in range(8):
perm.extend([i + 8 * j for j in range(8)])
perm_single = []
for i in range(4):
perm_single.extend([2 * i + j for j in [0, 1, 8, 9, 16, 17, 24, 25]])
return perm, perm_single
@functools.cache
def _get_inverted_perms() -> Tuple[List[int], List[int]]:
perm, perm_single = _get_perms()
return reverse(perm), reverse(perm_single)
def marlin_permute(t: torch.Tensor, reverse=False):
perm, perm_single = _get_inverted_perms() if reverse else _get_perms()
out_features = t.shape[1]
if t.shape[0] == 1:
reordered = reorder(t, perm_single)
else:
reordered = reorder(t, perm)
return reordered.reshape((-1, out_features)).contiguous()