optimum/quanto/tensor/weights/tinygemm/qbits.py (119 lines of code) (raw):

# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import ast import torch from torch.autograd import Function from ...function import QuantizedLinearFunction from ...grouped import group, ungroup from ...qtype import qtypes from ..qbits import WeightQBitsTensor from .packed import TinyGemmPackedTensor __all__ = ["TinyGemmWeightQBitsTensor"] class TinyGemmQBitsDequantizer(Function): @staticmethod def forward(ctx, t): # There is no custom dequantize kernel available, so we need to convert back to a QBitsTensor qbt = t.weight_qbits_tensor() return qbt.dequantize() @staticmethod def backward(ctx, gO): return gO class TinyGemmQBitsLinearFunction(QuantizedLinearFunction): @staticmethod def forward(ctx, input, other, bias): ctx.save_for_backward(input, other) if type(input) is not torch.Tensor: input = input.dequantize() in_features = input.shape[-1] out_features = other.shape[0] output_shape = input.shape[:-1] + (out_features,) if input.device.type == "cpu": output = torch._weight_int4pack_mm_for_cpu( input.reshape(-1, in_features), other._data._data, other._group_size, other._scale_shift ) else: output = torch._weight_int4pack_mm( input.reshape(-1, in_features), other._data._data, other._group_size, other._scale_shift ) output = output.reshape(output_shape) if bias is not None: output = output + bias return output class TinyGemmWeightQBitsTensor(WeightQBitsTensor): @staticmethod def __new__(cls, qtype, axis, group_size, size, stride, data, scale_shift, requires_grad=False): if isinstance(scale_shift, torch.Tensor): dtype = scale_shift.dtype assert data.device == scale_shift.device else: assert isinstance(scale_shift, (tuple, list)) scale, shift = scale_shift dtype = scale.dtype assert shift.dtype == dtype assert data.device == scale.device assert data.device == shift.device return torch.Tensor._make_wrapper_subclass( cls, size, strides=stride, dtype=dtype, device=data.device, requires_grad=requires_grad ) def __init__(self, qtype, axis, group_size, size, stride, data, scale_shift, requires_grad=False): assert axis == 0 if not isinstance(data, TinyGemmPackedTensor): assert type(data) is torch.Tensor assert isinstance(scale_shift, (tuple, list)) # Format data, scale and shift for tinygemm ungrouped = ungroup(data, axis=0, orig_shape=size) self._data = TinyGemmPackedTensor.pack(ungrouped) out_features, in_features = size scale, shift = scale_shift scale = scale.reshape(out_features, in_features // group_size, 1) shift = shift.reshape(out_features, in_features // group_size, 1) if not shift.dtype.is_floating_point: # Integer shift must be scaled shift = scale * shift # The tinygemm kernel actually uses the mid-point of the quantization range as shift min_range = -shift half_qrange = 2 ** (qtype.bits - 1) * scale # This operation is lossy for bfloat16, and the actual value of shift will be lost shift = min_range + half_qrange # Scale and shift are actually stored in the same tensor self._scale_shift = torch.cat([scale, shift], 2).transpose(0, 1).contiguous() else: self._data = data self._scale_shift = scale_shift self._qtype = qtype self._axis = axis self._group_size = group_size def dequantize(self): return TinyGemmQBitsDequantizer.apply(self) def weight_qbits_tensor(self): """Convert back to a WeightQBitsTensor This is required to make sure only standard packing is used when serializing. """ data = group(self._data.unpack(), axis=self.axis, group_size=self._group_size) n_scales = self._scale_shift.numel() // 2 scale = self._scale_shift[:, :, 0].t().reshape((n_scales, 1)) shift = self._scale_shift[:, :, 1].t().reshape((n_scales, 1)) half_qrange = 2 ** (self.qtype.bits - 1) * scale # This operation is lossy for bfloat16, and the actual value of shift will not be recovered shift = half_qrange - shift return WeightQBitsTensor( self._qtype, self._axis, self._group_size, self.size(), self.stride(), data, scale, shift ) def __tensor_flatten__(self): inner_tensors = ["_data", "_scale_shift"] # Since meta can be used for serialization, use only strings meta = { "qtype": self._qtype.name, "axis": str(self._axis), "group_size": str(self._group_size), "size": str(list(self.size())), "stride": str(list(self.stride())), } return inner_tensors, meta @staticmethod def __tensor_unflatten__(inner_tensors, meta, outer_size, outer_stride): assert len(inner_tensors) == 2 assert len(meta) == 5 data, scale_shift = inner_tensors["_data"], inner_tensors["_scale_shift"] # Meta should only contain strings, AST compatible except qtype qtype = qtypes[meta["qtype"]] axis = ast.literal_eval(meta["axis"]) group_size = ast.literal_eval(meta["group_size"]) size = ast.literal_eval(meta["size"]) stride = ast.literal_eval(meta["stride"]) return TinyGemmWeightQBitsTensor(qtype, axis, group_size, size, stride, data, scale_shift) @classmethod def __torch_function__(cls, func, types, args=(), kwargs=None): """Dispatch torch functions applied on this subtensor This method is called whenever a torch function (such as `torch.nn.functional.linear`) is called with at least one parameter coresponding to this subtensor: - if a quantized implementation exists for the selected function, it is called, - otherwise, the original implementation is called, deactivating further functional dispatch. During the execution of the standard torch function, a second-level of dispatch will happen, but this time directly on individual torch Tensor operations (mainly ATEN). """ kwargs = kwargs or {} if func is torch.nn.functional.linear: def qlinear(input, other, bias=None): return TinyGemmQBitsLinearFunction.apply(input, other, bias) return qlinear(*args, **kwargs) # Defer to operations dispatcher with torch._C.DisableTorchFunctionSubclass(): return func(*args, **kwargs)