optimum/tpu/modeling_llama.py [1124:1140]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
            target_length = past_key_values.get_max_length()
        else:
            target_length = (
                attention_mask.shape[-1]
                if isinstance(attention_mask, torch.Tensor)
                else past_seen_tokens + sequence_length + 1
            )

        if attention_mask is not None and attention_mask.dim() == 4:
            # in this case we assume that the mask comes already in inverted form and requires no inversion or slicing
            if attention_mask.max() != 0:
                raise ValueError("Custom 4D attention mask should be passed in inverted form with max==0`")
            causal_mask = attention_mask
        else:
            causal_mask = torch.full(
                (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
            )
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



optimum/tpu/modeling_mistral.py [1112:1129]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
            target_length = past_key_values.get_max_length()
        # DynamicCache or no cache
        else:
            target_length = (
                attention_mask.shape[-1]
                if isinstance(attention_mask, torch.Tensor)
                else past_seen_tokens + sequence_length + 1
            )

        if attention_mask is not None and attention_mask.dim() == 4:
            # in this case we assume that the mask comes already in inverted form and requires no inversion or slicing
            if attention_mask.max() != 0:
                raise ValueError("Custom 4D attention mask should be passed in inverted form with max==0`")
            causal_mask = attention_mask
        else:
            causal_mask = torch.full(
                (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
            )
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



