optimum/tpu/modeling.py (47 lines of code) (raw):

# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TpuModelForXXX classes for inference on TPU devices using the same API as Transformers.""" from os import PathLike, environ from typing import Any from loguru import logger from transformers import AutoConfig from transformers import AutoModelForCausalLM as BaseAutoModelForCausalLM def config_name_to_class(pretrained_model_name_or_path: str): config = AutoConfig.from_pretrained(pretrained_model_name_or_path) if config.model_type == "gemma": from .modeling_gemma import GemmaForCausalLM return GemmaForCausalLM if config.model_type == "llama": from .modeling_llama import LlamaForCausalLM return LlamaForCausalLM if config.model_type == "mistral": from .modeling_mistral import MistralForCausalLM return MistralForCausalLM return BaseAutoModelForCausalLM class AutoModelForCausalLM(BaseAutoModelForCausalLM): @classmethod def from_pretrained( cls, pretrained_model_name_or_path: str | PathLike[str], task: str = None, batch_size: int = None, sequence_length: int = None, *model_args: Any, **kwargs: Any, ): if "PJRT_DEVICE" not in environ: logger.info("PJRT_DEVICE environment variable not found. Setting it to 'TPU'.") environ["PJRT_DEVICE"] = "TPU" if "DBG_DEVICE" in environ: device = environ["DBG_DEVICE"] logger.debug(f"Device set to: {device}") else: device = "xla" cls = config_name_to_class(pretrained_model_name_or_path) model = cls.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) model.to(device) # Update config with specific data) if task is not None or getattr(model.config, "task", None) is None: model.config.task = task if batch_size is not None or getattr(model.config, "batch_size", None) is None: model.config.batch_size = batch_size if sequence_length is not None or getattr(model.config, "sequence_length", None) is None: model.config.sequence_length = sequence_length # Do eval model.eval() return model