in optimum/bettertransformer/models/encoder_models.py [0:0]
def __init__(self, albert_layer, config):
r"""
A simple conversion of the ALBERT layer to its `BetterTransformer` implementation.
Args:
albert_layer (`torch.nn.Module`):
The original ALBERT Layer where the weights needs to be retrieved.
"""
super().__init__(config)
super(BetterTransformerBaseLayer, self).__init__()
# In_proj layer
self.in_proj_weight = nn.Parameter(
torch.cat(
[
albert_layer.attention.query.weight,
albert_layer.attention.key.weight,
albert_layer.attention.value.weight,
]
)
)
self.in_proj_bias = nn.Parameter(
torch.cat(
[
albert_layer.attention.query.bias,
albert_layer.attention.key.bias,
albert_layer.attention.value.bias,
]
)
)
# Out proj layer
self.out_proj_weight = albert_layer.attention.dense.weight
self.out_proj_bias = albert_layer.attention.dense.bias
# Linear layer 1
self.linear1_weight = albert_layer.ffn.weight
self.linear1_bias = albert_layer.ffn.bias
# Linear layer 2
self.linear2_weight = albert_layer.ffn_output.weight
self.linear2_bias = albert_layer.ffn_output.bias
# Layer norm 1
self.norm1_eps = albert_layer.attention.LayerNorm.eps
self.norm1_weight = albert_layer.attention.LayerNorm.weight
self.norm1_bias = albert_layer.attention.LayerNorm.bias
# Layer norm 2
self.norm2_eps = albert_layer.full_layer_layer_norm.eps
self.norm2_weight = albert_layer.full_layer_layer_norm.weight
self.norm2_bias = albert_layer.full_layer_layer_norm.bias
# Model hyper parameters
self.num_heads = albert_layer.attention.num_attention_heads
self.embed_dim = albert_layer.attention.all_head_size
# Last step: set the last layer to `False` -> this will be set to `True` when converting the model
self.is_last_layer = False
self.original_layers_mapping = {
"in_proj_weight": ["attention.query.weight", "attention.key.weight", "attention.value.weight"],
"in_proj_bias": ["attention.query.bias", "attention.key.bias", "attention.value.bias"],
"out_proj_weight": "attention.dense.weight",
"out_proj_bias": "attention.dense.bias",
"linear1_weight": "ffn.weight",
"linear1_bias": "ffn.bias",
"linear2_weight": "ffn_output.weight",
"linear2_bias": "ffn_output.bias",
"norm1_eps": "attention.LayerNorm.eps",
"norm1_weight": "attention.LayerNorm.weight",
"norm1_bias": "attention.LayerNorm.bias",
"norm2_eps": "full_layer_layer_norm.eps",
"norm2_weight": "full_layer_layer_norm.weight",
"norm2_bias": "full_layer_layer_norm.bias",
}
self.attention_head_size = config.hidden_size // config.num_attention_heads
self.attention_probs_dropout_prob = config.attention_probs_dropout_prob
self.hidden_dropout_prob = config.hidden_dropout_prob
self.act_fn_callable = ACT2FN[self.act_fn]
self.validate_bettertransformer()