in optimum/bettertransformer/models/encoder_models.py [0:0]
def __init__(self, wav2vec2_layer, config):
r"""
A simple conversion of the Wav2Vec2EncoderLayer to its `BetterTransformer` implementation.
Args:
wav2vec2_layer (`torch.nn.Module`):
The original `Wav2Vec2EncoderLayer` where the weights needs to be retrieved.
"""
super().__init__(config)
super(BetterTransformerBaseLayer, self).__init__()
# In_proj layer
self.in_proj_weight = nn.Parameter(
torch.cat(
[
wav2vec2_layer.attention.q_proj.weight,
wav2vec2_layer.attention.k_proj.weight,
wav2vec2_layer.attention.v_proj.weight,
]
)
)
self.in_proj_bias = nn.Parameter(
torch.cat(
[
wav2vec2_layer.attention.q_proj.bias,
wav2vec2_layer.attention.k_proj.bias,
wav2vec2_layer.attention.v_proj.bias,
]
)
)
# Out proj layer
self.out_proj_weight = wav2vec2_layer.attention.out_proj.weight
self.out_proj_bias = wav2vec2_layer.attention.out_proj.bias
# Linear layer 1
self.linear1_weight = wav2vec2_layer.feed_forward.intermediate_dense.weight
self.linear1_bias = wav2vec2_layer.feed_forward.intermediate_dense.bias
# Linear layer 2
self.linear2_weight = wav2vec2_layer.feed_forward.output_dense.weight
self.linear2_bias = wav2vec2_layer.feed_forward.output_dense.bias
# Layer norm 1
self.norm1_eps = wav2vec2_layer.layer_norm.eps
self.norm1_weight = wav2vec2_layer.layer_norm.weight
self.norm1_bias = wav2vec2_layer.layer_norm.bias
# Layer norm 2
self.norm2_eps = wav2vec2_layer.final_layer_norm.eps
self.norm2_weight = wav2vec2_layer.final_layer_norm.weight
self.norm2_bias = wav2vec2_layer.final_layer_norm.bias
# Model hyper parameters
self.num_heads = wav2vec2_layer.attention.num_heads
self.embed_dim = wav2vec2_layer.attention.embed_dim
# Last step: set the last layer to `False` -> this will be set to `True` when converting the model
self.is_last_layer = False
self.original_layers_mapping = {
"in_proj_weight": ["attention.q_proj.weight", "attention.k_proj.weight", "attention.v_proj.weight"],
"in_proj_bias": ["attention.q_proj.bias", "attention.k_proj.bias", "attention.v_proj.bias"],
"out_proj_weight": "attention.out_proj.weight",
"out_proj_bias": "attention.out_proj.bias",
"linear1_weight": "feed_forward.intermediate_dense.weight",
"linear1_bias": "feed_forward.intermediate_dense.bias",
"linear2_weight": "feed_forward.output_dense.weight",
"linear2_bias": "feed_forward.output_dense.bias",
"norm1_weight": "layer_norm.weight",
"norm1_bias": "layer_norm.bias",
"norm1_eps": "layer_norm.eps",
"norm2_weight": "final_layer_norm.weight",
"norm2_bias": "final_layer_norm.bias",
"norm2_eps": "final_layer_norm.eps",
}
if config.do_stable_layer_norm:
self.norm_first = True
self.validate_bettertransformer()