def generate()

in optimum/utils/input_generators.py [0:0]


    def generate(self, input_name: str, framework: str = "pt", int_dtype: str = "int64", float_dtype: str = "fp32"):
        decoder_hidden_size = self.normalized_config.DECODER_NORMALIZED_CONFIG_CLASS.hidden_size
        decoder_num_attention_heads = self.normalized_config.DECODER_NORMALIZED_CONFIG_CLASS.num_attention_heads
        decoder_shape = (
            self.batch_size,
            decoder_num_attention_heads,
            self.sequence_length,
            decoder_hidden_size // decoder_num_attention_heads,
        )

        if not self.use_cross_attention:
            return [
                (
                    self.random_float_tensor(decoder_shape, framework=framework, dtype=float_dtype),
                    self.random_float_tensor(decoder_shape, framework=framework, dtype=float_dtype),
                )
                for _ in range(self.num_layers)
            ]
        else:
            encoder_hidden_size = decoder_hidden_size
            encoder_num_attention_heads = decoder_num_attention_heads

            encoder_shape = (
                self.batch_size,
                encoder_num_attention_heads,
                self.encoder_sequence_length,
                encoder_hidden_size // encoder_num_attention_heads,
            )
            return [
                (
                    self.random_float_tensor(decoder_shape, framework=framework, dtype=float_dtype),
                    self.random_float_tensor(decoder_shape, framework=framework, dtype=float_dtype),
                    self.random_float_tensor(encoder_shape, framework=framework, dtype=float_dtype),
                    self.random_float_tensor(encoder_shape, framework=framework, dtype=float_dtype),
                )
                for _ in range(self.num_layers)
            ]