def inputs()

in optimum/exporters/onnx/model_configs.py [0:0]


    def inputs(self) -> Dict[str, Dict[int, str]]:
        # Batched inference is not supported in Transformers.
        if self.model_part == "text_encoder":
            common_inputs = {
                "input_ids": {0: "batch_size", 1: "encoder_sequence_length"},
                "attention_mask": {0: "batch_size", 1: "encoder_sequence_length"},
            }
        elif self.model_part == "encodec_decode":
            # 0: always 1 for chunk_length_s=None, 2: num_quantizers fixed.
            common_inputs = {"audio_codes": {1: "batch_size", 3: "chunk_length"}}
        elif self.model_part == "build_delay_pattern_mask":
            common_inputs = {
                "input_ids": {0: "batch_size_x_num_codebooks"},
                "pad_token_id": {},
                "max_length": {},
            }
        elif self._behavior is ConfigBehavior.DECODER:
            # Naming it total_batch_size as in case we use guidance_scale, the dimension 0 may be larger than simply the batch_size.
            # Reference: https://github.com/huggingface/transformers/blob/31c575bcf13c2b85b65d652dd1b5b401f99be999/src/transformers/models/musicgen/modeling_musicgen.py#L1932-L1935
            common_inputs = {
                "decoder_input_ids": {0: "total_batch_size_x_num_codebooks"},
                "encoder_outputs": {0: "total_batch_size", 1: "encoder_sequence_length"},
                # MusicgenForConditionalGeneration maps attention_mask to encoder_attention_mask.
                "attention_mask": {
                    0: "batch_size",
                    1: "encoder_sequence_length",
                },
            }
            if self.use_past_in_inputs:
                # TODO: validate the axis name for attention_mask
                # common_inputs["attention_mask"][1] = "past_encoder_sequence_length + sequence_length"
                self.add_past_key_values(common_inputs, direction="inputs")
            else:
                common_inputs["decoder_input_ids"] = {
                    0: "total_batch_size_x_num_codebooks",
                    1: "decoder_sequence_length",
                }
        else:
            raise ValueError(
                "This should not happen. Please open an issue at https://github.com/huggingface/optimum/issues."
            )

        return common_inputs