in optimum/bettertransformer/models/encoder_models.py [0:0]
def forward(self, hidden_states, attention_mask, output_attentions: bool, **__):
if output_attentions:
raise ValueError("output_attentions=True can not be supported with BetterTransformer.")
if not self.training and not torch.is_autocast_enabled() and not torch.is_autocast_cpu_enabled():
if hidden_states.is_nested:
attention_mask = None
if attention_mask is not None:
# attention mask comes in with values 0 and -inf. we convert to torch.nn.TransformerEncoder style bool mask
# 0->false->keep this token -inf->true->mask this token
attention_mask = attention_mask.bool()
if len(attention_mask.shape) == 4:
attention_mask = attention_mask.squeeze(1)[:, 0]
attention_mask = torch.reshape(attention_mask, (attention_mask.shape[0], attention_mask.shape[-1]))
hidden_states = torch._nested_tensor_from_mask(hidden_states, ~attention_mask)
attention_mask = None
hidden_states = torch._transformer_encoder_layer_fwd(
hidden_states,
self.embed_dim,
self.num_heads,
self.in_proj_weight,
self.in_proj_bias,
self.out_proj_weight,
self.out_proj_bias,
self.use_gelu,
self.norm_first,
self.norm1_eps,
self.norm1_weight,
self.norm1_bias,
self.norm2_weight,
self.norm2_bias,
self.linear1_weight,
self.linear1_bias,
self.linear2_weight,
self.linear2_bias,
attention_mask,
)
if hidden_states.is_nested and self.is_last_layer:
hidden_states = hidden_states.to_padded_tensor(0.0)
else:
raise NotImplementedError(
"Training and Autocast are not implemented for BetterTransformer + Wav2Vec2. Please open an issue."
)
return (hidden_states,)