src/peft/tuners/ia3/bnb.py [28:64]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        def __init__(
            self,
            base_layer: torch.nn.Module,
            adapter_name: str,
            is_feedforward: bool,
            init_ia3_weights: bool = True,
            **kwargs,
        ) -> None:
            super().__init__()
            IA3Layer.__init__(self, base_layer, is_feedforward=is_feedforward)

            # Freezing the pre-trained weight matrix
            self.get_base_layer().weight.requires_grad = False
            self._active_adapter = adapter_name
            self.update_layer(adapter_name, init_ia3_weights)

        def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor:
            # note: no check for self.merged because merging is not supported (yet)
            if self.disable_adapters:
                return self.base_layer(x)

            ia3_scaling = 1
            for active_adapter in self.active_adapters:
                if active_adapter not in self.ia3_l.keys():
                    continue
                ia3_scaling *= self.ia3_l[active_adapter].flatten()

            requires_conversion = (not torch.is_autocast_enabled()) and (x.dtype != torch.float32)
            if requires_conversion:
                x = x.float()
            if self.is_feedforward:
                result = self.base_layer(x * ia3_scaling)
                expected_dtype = result.dtype
            else:
                result = self.base_layer(x)
                expected_dtype = result.dtype
                result = result * ia3_scaling
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



src/peft/tuners/ia3/bnb.py [80:116]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        def __init__(
            self,
            base_layer: torch.nn.Module,
            adapter_name: str,
            is_feedforward: bool,
            init_ia3_weights: bool = True,
            **kwargs,
        ) -> None:
            super().__init__()
            IA3Layer.__init__(self, base_layer, is_feedforward=is_feedforward)

            # Freezing the pre-trained weight matrix
            self.get_base_layer().weight.requires_grad = False
            self._active_adapter = adapter_name
            self.update_layer(adapter_name, init_ia3_weights)

        def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor:
            # note: no check for self.merged because merging is not supported (yet)
            if self.disable_adapters:
                return self.base_layer(x)

            ia3_scaling = 1
            for active_adapter in self.active_adapters:
                if active_adapter not in self.ia3_l.keys():
                    continue
                ia3_scaling *= self.ia3_l[active_adapter].flatten()

            requires_conversion = (not torch.is_autocast_enabled()) and (x.dtype != torch.float32)
            if requires_conversion:
                x = x.float()
            if self.is_feedforward:
                result = self.base_layer(x * ia3_scaling)
                expected_dtype = result.dtype
            else:
                result = self.base_layer(x)
                expected_dtype = result.dtype
                result = result * ia3_scaling
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



