def __init__()

in src/peft/tuners/lora/layer.py [0:0]


    def __init__(self, base_layer: nn.Module, ephemeral_gpu_offload: bool = False, **kwargs) -> None:
        self.base_layer = base_layer
        self.r = {}
        self.lora_alpha = {}
        self.scaling = {}
        self.lora_dropout = nn.ModuleDict({})
        self.lora_A = nn.ModuleDict({})
        self.lora_B = nn.ModuleDict({})
        # For Embedding layer
        self.lora_embedding_A = nn.ParameterDict({})
        self.lora_embedding_B = nn.ParameterDict({})
        # Mark the weight as unmerged
        self._disable_adapters = False
        self.merged_adapters = []
        self.use_dora: dict[str, bool] = {}  # not actively used anymore after #2443, keep it for BC
        self.lora_bias: dict[str, bool] = {}
        self.lora_magnitude_vector = torch.nn.ModuleDict()  # for DoRA
        self._caches: dict[str, Any] = {}
        self.ephemeral_gpu_offload: bool = ephemeral_gpu_offload
        # flag to enable/disable casting of input to weight dtype during forward call
        self.cast_input_dtype_enabled: bool = True
        self.lora_variant: dict[str, LoraVariant] = {}
        self.kwargs = kwargs

        base_layer = self.get_base_layer()
        if isinstance(base_layer, nn.Linear):
            in_features, out_features = base_layer.in_features, base_layer.out_features
        elif isinstance(base_layer, nn.Conv1d):
            in_features, out_features = base_layer.in_channels, base_layer.out_channels
        elif isinstance(base_layer, nn.Conv2d):
            in_features, out_features = base_layer.in_channels, base_layer.out_channels
        elif isinstance(base_layer, nn.Conv3d):
            in_features, out_features = base_layer.in_channels, base_layer.out_channels
        elif isinstance(base_layer, nn.Embedding):
            in_features, out_features = base_layer.num_embeddings, base_layer.embedding_dim
        elif isinstance(base_layer, Conv1D):
            in_features, out_features = (
                base_layer.weight.ds_shape if hasattr(base_layer.weight, "ds_shape") else base_layer.weight.shape
            )
        elif isinstance(base_layer, nn.MultiheadAttention):
            if not base_layer._qkv_same_embed_dim:
                raise ValueError(f"Only same dim for query/key/value is supported as of now for {self.__class__}.")
            in_features, out_features = base_layer.embed_dim, 3 * base_layer.embed_dim
        elif hasattr(base_layer, "infeatures") and hasattr(base_layer, "outfeatures"):
            # QuantLinear
            in_features, out_features = base_layer.infeatures, base_layer.outfeatures
        elif hasattr(base_layer, "input_size") and hasattr(base_layer, "output_size"):
            # Megatron ColumnParallelLinear,RowParallelLinear
            in_features, out_features = base_layer.input_size, base_layer.output_size
        elif hasattr(base_layer, "codebooks") and base_layer.__class__.__name__ == "QuantizedLinear":
            # AQLM QuantLinear
            in_features, out_features = base_layer.in_features, base_layer.out_features
        elif hasattr(base_layer, "w_bit") and base_layer.__class__.__name__ == "WQLinear_GEMM":
            # Awq layers
            in_features, out_features = base_layer.in_features, base_layer.out_features
        elif base_layer.__class__.__name__ == "EetqLinear":
            # Eetq layers
            in_features, out_features = base_layer.in_features, base_layer.out_features
        elif hasattr(base_layer, "W_q") and base_layer.__class__.__name__ == "HQQLinear":
            # HQQ layers
            in_features, out_features = base_layer.in_features, base_layer.out_features
        elif base_layer.__class__.__name__ == "PatchedLinear":
            # INC layers
            in_features, out_features = base_layer.in_features, base_layer.out_features
        else:
            # possibly support user provided custom layer types using dynamic dispatch
            if hasattr(base_layer, "in_features") and hasattr(base_layer, "out_features"):
                in_features, out_features = base_layer.in_features, base_layer.out_features
            else:
                in_features, out_features = None, None
            warnings.warn(
                f"Unsupported layer type '{type(base_layer)}' encountered, proceed at your own risk.", UserWarning
            )

        self.in_features = in_features
        self.out_features = out_features