scripts/train_memory.py (185 lines of code) (raw):

# Copyright 2025-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This script trains a model on a small text dataset and measures the memory consumption, as well as a few other useful metrics. Example: Get help: ```bash python train_memory.py --help ``` Train the google/gemma-2-2b model with a LoRA config json at the indicated location. ```bash python train_memory.py "google/gemma-2-2b" --max_seq_length 256 --batch_size 1 --rank 32 --dtype bfloat16 --path_config <path-to-adapter-config.json> ``` Fully fine-tune the model (i.e. without LoRA) by setting the rank to 0: ```bash python train_memory.py "google/gemma-2-2b" --rank 0 ``` Get an estimate of the size of the hidden states by passing `--monitor_tensors`. This trains just for a single epoch. For realistic estimates, the batch size for this: ```bash python train_memory.py "google/gemma-2-2b" --max_seq_length 256 --batch_size 32 --rank 32 --dtype bfloat16 --path_config configs/lora_rank-32_embedding-lora/ --monitor_tensors ``` """ import argparse import gc import os import sys import tempfile import time import warnings from collections import Counter from contextlib import nullcontext from functools import partial import torch from datasets import load_dataset from torch import nn from transformers import ( AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, ) from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training from peft.utils import CONFIG_NAME, SAFETENSORS_WEIGHTS_NAME # suppress all warnings warnings.filterwarnings("ignore") device = "cuda" if torch.cuda.is_available() else "cpu" dtype_to_bytes_linear = {"float32": 4, "float16": 2, "bfloat16": 2, "int8": 1, "int4": 0.5} def init_cuda(): torch.manual_seed(0) if device == "cpu": return torch.cuda.reset_peak_memory_stats() torch.cuda.manual_seed_all(0) # might not be necessary, but just to be sure nn.Linear(1, 1).to(device) def get_data(tokenizer): def tokenize(samples): # For some reason, the max sequence length is not honored by the tokenizer, resulting in IndexErrors. Thus, # manually ensure that sequences are not too long. tokenized = tokenizer(samples["quote"]) tokenized["input_ids"] = [input_ids[: tokenizer.model_max_length] for input_ids in tokenized["input_ids"]] tokenized["attention_mask"] = [ input_ids[: tokenizer.model_max_length] for input_ids in tokenized["attention_mask"] ] return tokenized data = load_dataset("ybelkada/english_quotes_copy") data = data.map(tokenize, batched=True) # We need to manually remove unused columns. This is because we cannot use remove_unused_columns=True in the # Trainer, as this leads to errors with torch.compile. We also cannot just leave them in, as they contain # strings. Therefore, manually remove all unused columns. data = data.remove_columns(["quote", "author", "tags"]) return data def train(model_id, rank, dtype, monitor_tensors, max_seq_length, batch_size, max_steps, path_config): init_cuda() cuda_memory_init = torch.cuda.max_memory_allocated() cuda_memory_log = [] tokenizer = AutoTokenizer.from_pretrained(model_id) tokenizer.model_max_length = max_seq_length if not tokenizer.pad_token: tokenizer.pad_token = tokenizer.eos_token data = get_data(tokenizer) if dtype == "int4": quant_config = BitsAndBytesConfig(load_in_4bit=True) model = AutoModelForCausalLM.from_pretrained(model_id, device_map=device, quantization_config=quant_config) model = prepare_model_for_kbit_training(model) elif dtype == "int8": quant_config = BitsAndBytesConfig(load_in_8bit=True) model = AutoModelForCausalLM.from_pretrained(model_id, device_map=device, quantization_config=quant_config) model = prepare_model_for_kbit_training(model) elif dtype == "bfloat16": model = AutoModelForCausalLM.from_pretrained(model_id, device_map=device, torch_dtype=torch.bfloat16) elif dtype == "float16": model = AutoModelForCausalLM.from_pretrained(model_id, device_map=device, torch_dtype=torch.float16) elif dtype == "float32": model = AutoModelForCausalLM.from_pretrained(model_id, device_map=device) else: raise ValueError(f"Invalid dtype: {dtype}") if rank > 0: if path_config is None: raise RuntimeError("LoRA rank > 0 requires a path to a LoRA config") if path_config.endswith(CONFIG_NAME): path_config = path_config.removesuffix(CONFIG_NAME) config = LoraConfig.from_pretrained(path_config) model = get_peft_model(model, config) model.print_trainable_parameters() else: print("Not using LoRA") model.config.use_cache = False storage = [] def pack(x): storage.append(x) return len(storage) - 1 def unpack(x): return storage[x] train_ctx = partial(torch.autograd.graph.saved_tensors_hooks, pack, unpack) if monitor_tensors else nullcontext optimizer = torch.optim.AdamW(model.parameters(), lr=1e-5) losses = [] sample = 0 tic_total = time.perf_counter() for i in range(0, max_steps): storage.clear() tic = time.perf_counter() try: batch = tokenizer.pad(data["train"][sample : sample + batch_size], return_tensors="pt").to(model.device) sample += batch_size # add targets batch["labels"] = batch["input_ids"].clone() optimizer.zero_grad() with train_ctx(): outputs = model(**batch) loss = outputs.loss loss.backward() optimizer.step() losses.append(loss.item()) cuda_memory_log.append(torch.cuda.memory_allocated() - cuda_memory_init) torch.cuda.empty_cache() gc.collect() toc = time.perf_counter() print(f"step {i:3d} loss {loss.item():.6f} time {toc - tic:.2f}s", file=sys.stderr) except KeyboardInterrupt: print("canceled training") break if monitor_tensors: break toc_total = time.perf_counter() cuda_memory_final = torch.cuda.max_memory_allocated() cuda_memory_avg = int(sum(cuda_memory_log) / len(cuda_memory_log)) print(f"cuda memory avg: {cuda_memory_avg // 2**20}MB") print(f"cuda memory max: {(cuda_memory_final - cuda_memory_init) // 2**20}MB") print(f"total time: {toc_total - tic_total:.2f}s") with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(tmp_dir) stat = os.stat(os.path.join(tmp_dir, SAFETENSORS_WEIGHTS_NAME)) file_size = stat.st_size print(f"file size: {file_size / 2**20:.1f}MB") if monitor_tensors: dtype_counts = Counter(t.dtype for t in storage) shape_counts = Counter(t.shape for t in storage) param_shape_counts = Counter(p.shape for p in model.parameters()) param_shape_counts_copy = dict(param_shape_counts).copy() # shape counts includes the params, so we need to subtract them; note that they can be transposed # this is an approximation diff_shape_counts = {} for shape, count in shape_counts.items(): if shape in param_shape_counts_copy: diff_count = count - param_shape_counts[shape] if diff_count > 0: diff_shape_counts[shape] = diff_count param_shape_counts_copy[shape] = max(0, param_shape_counts_copy[shape] - diff_count) elif shape[::-1] in param_shape_counts: diff_count = count - param_shape_counts[shape[::-1]] if diff_count > 0: diff_shape_counts[shape] = diff_count param_shape_counts_copy[shape[::-1]] = max(0, param_shape_counts_copy[shape[::-1]] - diff_count) else: diff_shape_counts[shape] = count total_size = sum(t.numel() * t.element_size() for t in storage) total_size_mb = f"{total_size // 2**20}MB" diff_size = 0 for shape, count in diff_shape_counts.items(): diff_size += count * torch.zeros(shape).numel() * dtype_to_bytes_linear[dtype] param_size = total_size - diff_size diff_size_mb = f"{diff_size // 2**20}MB" param_size_mb = f"{param_size // 2**20}MB" print(f"Dtype counts: {dtype_counts.most_common()}") print(f"Total size of tensors: {total_size_mb: >12}") print(f"Total size of activations: {diff_size_mb: >12}") print(f"Total size of parameters: {param_size_mb: >12}") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("model_id", type=str, help="Model name on Hugging Face Hub") parser.add_argument("--rank", type=int, default=8, help="Rank of LoRA, 0 => no LoRA, default 8") parser.add_argument( "--dtype", type=str, default="float32", help="Data type, one of float32, float16, bfloat16, int8, int4, default float32", ) parser.add_argument( "--monitor_tensors", action="store_true", help="Monitor tensor sizes during training for a single training step, off by default", ) parser.add_argument("--max_seq_length", type=int, default=128, help="Maximum sequence length, default 128") parser.add_argument("--batch_size", type=int, default=1, help="Batch size, default 1") parser.add_argument("--max_steps", type=int, default=50, help="Maximum number of training steps, default 50") parser.add_argument("--path_config", type=str, default=None, help="Path to LoRA config") args = parser.parse_args() train( model_id=args.model_id, rank=args.rank, dtype=args.dtype, monitor_tensors=args.monitor_tensors, max_seq_length=args.max_seq_length, batch_size=args.batch_size, max_steps=args.max_steps, path_config=args.path_config, )