picotron/tensor_parallel/tensor_parallel.py [90:110]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
            with torch.no_grad():
                self.bias.zero_()
        else:
            self.register_parameter("bias", None)

        self.reset_parameters()

    def reset_parameters(self):
        # Initialize weight tensor with the default initialization method used for nn.Linear in PyTorch
        master_weight = torch.empty(
            self.out_features, 
            self.in_features, 
            dtype=self.weight.dtype,
            device=self.weight.device,
            requires_grad=False
        )
        
        # Calculate bound based on master weight's input dimension
        k = 1 / master_weight.size(1)
        bound = math.sqrt(k)
        torch.nn.init.uniform_(master_weight, -bound, bound)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



picotron/tensor_parallel/tensor_parallel.py [158:178]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
            with torch.no_grad():
                self.bias.zero_()
        else:
            self.register_parameter("bias", None)

        self.reset_parameters()

    def reset_parameters(self):
        # Initialize weight tensor with same dtype and device as self.weight
        master_weight = torch.empty(
            self.out_features, 
            self.in_features, 
            dtype=self.weight.dtype,
            device=self.weight.device,
            requires_grad=False
        )
        
        # Calculate bound based on master weight's input dimension
        k = 1 / master_weight.size(1)
        bound = math.sqrt(k)    
        torch.nn.init.uniform_(master_weight, -bound, bound)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



