in picotron/pipeline_parallel/pp_communications.py [0:0]
def pipeline_communicate(operation, device, dtype, tensor=None, shapes=None):
global STEP
global VERBOSE
if operation == 'recv_forward':
if pgm.process_group_manager.pp_is_first_stage: return None
tensor = torch.empty(shapes, requires_grad=True, device=device, dtype=dtype)
src = pgm.process_group_manager.pp_prev_rank
elif operation == 'send_forward':
if pgm.process_group_manager.pp_is_last_stage: return
dest = pgm.process_group_manager.pp_next_rank
elif operation == 'recv_backward':
if pgm.process_group_manager.pp_is_last_stage: return None
tensor = torch.empty(shapes, requires_grad=True, device=device, dtype=dtype)
src = pgm.process_group_manager.pp_next_rank
elif operation == 'send_backward':
if pgm.process_group_manager.pp_is_first_stage: return
dest = pgm.process_group_manager.pp_prev_rank
is_send = operation.startswith('send')
peer_rank = dest if is_send else src
op = dist.P2POp(dist.isend if is_send else dist.irecv, tensor, peer_rank)
if VERBOSE: print(f"{operation} | {'sending' if is_send else 'receiving'} {operation.split('_')[1]} {pgm.process_group_manager.pp_rank} {'→' if is_send else '←'} {peer_rank} | STEP:{STEP} | RANK:{pgm.process_group_manager.pp_rank}", flush=True)
[req.wait() for req in dist.batch_isend_irecv([op])]
torch.cuda.synchronize()
if VERBOSE: STEP += 1
return tensor if not is_send else None