def train_step_pipeline_afab()

in step7_pipeline_parallel_afab/pipeline_parallel.py [0:0]


def train_step_pipeline_afab(model, data_loader, tensor_shapes, device, dtype):
    """
    Executes a training step using Activation Forward - Activation Backward (AFAB) pipeline parallelism.
    Implements separate forward and backward passes to optimize memory usage.
    """
    logging_loss: torch.float32 = 0.0
    input_tensors, output_tensors = [], []
    requires_grad_sync = pgm.process_group_manager.dp_world_size > 1

    # === All Forward Pass Phase ===
    for _ in range(data_loader.grad_acc_steps):
        input_tensor = pipeline_communicate(operation='recv_forward', shapes=tensor_shapes, device=device, dtype=dtype)
        batch = next(data_loader)
        batch["hidden_states"] = input_tensor.to(device) if input_tensor is not None else input_tensor
        output_tensor = model.forward(input_ids=batch["input_ids"].to(device), position_ids=batch["position_ids"].to(device), hidden_states=batch["hidden_states"])
        pipeline_communicate(operation='send_forward', tensor=output_tensor, device=device, dtype=dtype)
        
        # calculate loss on the last stage
        if pgm.process_group_manager.pp_is_last_stage:
            output_tensor = F.cross_entropy(output_tensor.transpose(1, 2), batch["target_ids"].to(device), reduction='mean')
            logging_loss += output_tensor.item() / data_loader.grad_acc_steps

        input_tensors.append(input_tensor)
        output_tensors.append(output_tensor)

    # === All Backward Pass Phase ===
    for ith_microbatch in range(data_loader.grad_acc_steps):
        if requires_grad_sync:
            is_last_iteration = (ith_microbatch == data_loader.grad_acc_steps - 1)
            model.require_backward_grad_sync = is_last_iteration
        output_tensor_grad = pipeline_communicate(operation='recv_backward', shapes=tensor_shapes, device=device, dtype=dtype)
        input_tensor, output_tensor = input_tensors.pop(0), output_tensors.pop(0)
        input_tensor_grad = model.backward(input_tensor, output_tensor, output_tensor_grad)
        pipeline_communicate(operation='send_backward', tensor=input_tensor_grad, device=device, dtype=dtype)

    return logging_loss