step1_modeling/train.py (59 lines of code) (raw):
"""
torchrun --nproc_per_node 1 train.py
"""
import os
import datetime
import torch
import torch.nn.functional as F
import torch.distributed as dist
import argparse
from torch.optim import AdamW
from transformers import AutoConfig
from model import Llama
from utils import set_all_seed, print
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Training script for LLaMA model")
# Environment arguments
parser.add_argument("--omp_num_threads", type=str, default="1")
parser.add_argument("--tokenizers_parallelism", type=str, default="false")
# Model arguments
parser.add_argument("--model_name", type=str, default="HuggingFaceTB/SmolLM-360M-Instruct")
parser.add_argument("--num_hidden_layers", type=int, default=32)
parser.add_argument("--num_attention_heads", type=int, default=16)
parser.add_argument("--num_key_value_heads", type=int, default=4)
# Training arguments
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--learning_rate", type=float, default=3e-4)
parser.add_argument("--seq_len", type=int, default=32)
parser.add_argument("--micro_batch_size", type=int, default=1)
# Logging arguments
parser.add_argument("--run_name", type=str, default="default_run")
parser.add_argument("--use_wandb", action="store_true")
args = parser.parse_args()
# Set environment variables
os.environ["OMP_NUM_THREADS"] = args.omp_num_threads
os.environ["TOKENIZERS_PARALLELISM"] = args.tokenizers_parallelism
os.environ["DEVICE"] = "cuda"
local_rank = int(os.environ["LOCAL_RANK"])
global_rank = int(os.environ["RANK"])
world_size = int(os.environ["WORLD_SIZE"])
backend = "nccl"
torch.cuda.set_device(local_rank)
device = torch.device("cuda", local_rank)
dtype = torch.bfloat16
dist.init_process_group(rank=global_rank, world_size=world_size, backend=backend, init_method=f"env://", timeout=datetime.timedelta(minutes=2))
set_all_seed(args.seed)
model_config = AutoConfig.from_pretrained(args.model_name)
model_config.num_hidden_layers = args.num_hidden_layers
model_config.num_attention_heads = args.num_attention_heads
model_config.num_key_value_heads = args.num_key_value_heads
model_config.max_position_embeddings = args.seq_len
model = Llama(config=model_config)
model.to(dtype).to(device)
model.train()
dist.barrier()
optimizer = AdamW(model.parameters(), lr=args.learning_rate)
dist.barrier()
# Create dummy data
input_ids = torch.randint(0, model_config.vocab_size, (args.micro_batch_size, args.seq_len), device=device)
target_ids = torch.randint(0, model_config.vocab_size, (args.micro_batch_size, args.seq_len), device=device)
# Training step
optimizer.zero_grad()
# Forward pass
outputs = model(input_ids=input_ids)
# Compute loss
target_ids = target_ids.reshape(-1)
outputs = outputs.view(-1, model_config.vocab_size)
loss = F.cross_entropy(outputs, target_ids)
# Backward pass
loss.backward()
# Optimizer step
optimizer.step()
print(f"Loss: {loss.item():.4f}", is_print_rank=(global_rank == 0))
dist.destroy_process_group()