step2_process_group_manager/model.py (120 lines of code) (raw):

import torch import torch.nn as nn import torch.nn.functional as F from flash_attn.flash_attn_interface import flash_attn_func from flash_attn.layers.rotary import apply_rotary_emb from flash_attn.ops.triton.layer_norm import layer_norm_fn def flash_attention(q, k, v, causal = True): q = q.permute(0, 2, 1, 3) # [batch_size, seq_length, num_head , head_dim] k = k.permute(0, 2, 1, 3) # [batch_size, seq_length, num_head , head_dim] v = v.permute(0, 2, 1, 3) # [batch_size, seq_length, num_head , head_dim] return flash_attn_func(q, k, v, causal=causal) def get_cos_sin(seq_length, head_dim, base=500000.0): assert head_dim%2==0 # Results on CUDA and CPU are different even with the same formula, To match transformers implementation. frequency should be computed on CPU theta = 1.0 / (base ** (torch.arange(0, head_dim, 2, dtype=torch.int64).float().to('cpu') / head_dim)) dtype = torch.bfloat16 device = torch.device('cuda') position = torch.arange(seq_length).to(device).unsqueeze(1).float() # [seq_length, 1] # To match transformers implementation. m * theta should be computed on GPU theta = theta.to(device) return torch.cos(position.float()*theta.float()).to(dtype).repeat(1,2), torch.sin(position.float()*theta.float()).to(dtype).repeat(1,2) # [seq_length, head_dim], [seq_length, head_dim] class TritonRMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-5, device=None, dtype=None): super().__init__() self.eps = eps self.weight = nn.Parameter(torch.ones(hidden_size)) self.register_parameter("bias", None) def forward( self, hidden_states, residual=None, dropout_p=0.0, prenorm=False, residual_in_fp32=False, return_dropout_mask=False ): return layer_norm_fn( hidden_states, self.weight, None, residual=residual, eps=self.eps, dropout_p=dropout_p, prenorm=prenorm, residual_in_fp32=residual_in_fp32, is_rms_norm=True, return_dropout_mask=return_dropout_mask, ) class Attention(nn.Module): def __init__(self, config, layer_idx): super().__init__() self.hidden_size = config.hidden_size self.num_heads = config.num_attention_heads self.num_key_values = config.num_key_value_heads self.head_dim = self.hidden_size//self.num_heads self.num_local_heads = config.num_attention_heads self.num_local_kv_heads = config.num_key_value_heads self.q_proj = nn.Linear(config.hidden_size, self.num_heads*self.head_dim, bias=False) self.k_proj = nn.Linear(config.hidden_size, self.num_key_values*self.head_dim, bias=False) self.v_proj = nn.Linear(config.hidden_size, self.num_key_values*self.head_dim, bias=False) self.out_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=False) self.layer_idx = layer_idx def forward(self, x, cos, sin, attention_mask=None, position_ids=None): batch_size, seq_length, hidden_dim = x.size() q = self.q_proj(x) # [batch_size, seq_length, num_heads*head_dim] k = self.k_proj(x) # [batch_size, seq_length, num_key_values*head_dim] v = self.v_proj(x) # [batch_size, seq_length, num_key_values*head_dim] q = q.view(batch_size, seq_length, self.num_local_heads, self.head_dim) # [batch_size, seq_length, num_heads, head_dim] k = k.view(batch_size, seq_length, self.num_local_kv_heads, self.head_dim) # [batch_size, seq_length, num_key_values, head_dim] q = apply_rotary_emb(q,cos[:, :self.head_dim // 2], sin[:, :self.head_dim // 2],interleaved=False) # [batch_size, seq_length, num_heads, head_dim] k = apply_rotary_emb(k,cos[:, :self.head_dim // 2], sin[:, :self.head_dim // 2],interleaved=False) # [batch_size, seq_length, num_key_values, head_dim] q = q.transpose(1, 2) # [batch_size, num_heads, seq_length, head_dim] k = k.transpose(1, 2) # [batch_size, num_key_values, seq_length, head_dim] v = v.view(batch_size, seq_length, self.num_local_kv_heads, self.head_dim).transpose(1,2) # [batch_size, num_key_values, seq_length, head_dim] k = k.repeat_interleave(self.num_local_heads // self.num_local_kv_heads, dim=1) # [batch_size, num_heads, seq_length, head_dim] v = v.repeat_interleave(self.num_local_heads // self.num_local_kv_heads, dim=1) # [batch_size, num_heads, seq_length, head_dim] causal = True if q.size(2) == k.size(2) else False # During decoding phase. The lenghth of q is usually 1. out = flash_attention(q, k, v, causal = causal) # [batch_size, seq_length, num_heads, head_dim] out = out.reshape(batch_size, seq_length, self.num_local_heads * self.head_dim) # [batch_size, seq_length, hidden_dim] out = self.out_proj(out) # [batch_size, seq_length, hidden_dim] return out class MLP(nn.Module): def __init__(self, config) -> None: super().__init__() self.up_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False) self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False) self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False) def forward(self, x): #TODO: dont do single line operations as it is harder to debug return self.down_proj(F.silu(self.gate_proj(x)) * self.up_proj(x)) class DecoderLayer(nn.Module): # TritonRMSNorm -> Attention -> Residual -> TritonRMSNorm -> MLP -> Residual def __init__(self, config, layer_idx): super().__init__() self.input_layernorm = TritonRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = TritonRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.attention = Attention(config, layer_idx = layer_idx) self.mlp = MLP(config) self.layer_idx = layer_idx head_dim = config.hidden_size // config.num_attention_heads self.cos, self.sin = get_cos_sin(config.max_position_embeddings, head_dim=head_dim , base=config.rope_theta) # [max_position_embeddings, head_dim] def forward(self, x, attention_mask = None, position_ids = None): cos, sin = self.cos, self.sin x = x + self.attention(self.input_layernorm(x), cos, sin, attention_mask, position_ids) # Attention x = x + self.mlp(self.post_attention_layernorm(x)) # MLP return x class Llama(nn.Module): def __init__(self, config) -> None: super().__init__() # sanity check assert config.hidden_size % config.num_attention_heads==0 assert config.num_attention_heads % config.num_key_value_heads==0 # params self.vocab_size = config.vocab_size self.hidden_size = config.hidden_size self.num_heads = config.num_attention_heads self.num_key_values = config.num_key_value_heads self.head_dim = self.hidden_size//self.num_heads self.max_position_embeddings = config.max_position_embeddings self.num_layers = config.num_hidden_layers self.model_config = config # modules self.embedding = nn.Embedding(self.vocab_size, self.hidden_size) self.decoder_layers = nn.ModuleList([DecoderLayer(config,layer_idx = i) for i in range(self.num_layers)]) self.final_proj = nn.Linear(self.hidden_size, self.vocab_size, bias=False) self.final_norm = TritonRMSNorm(self.hidden_size, eps=config.rms_norm_eps) def forward(self, input_ids, attention_mask=None, position_ids: torch.Tensor = None): x = self.embedding(input_ids) for layer in self.decoder_layers: x = layer(x) # [batch_size, seq_length, hidden_dim] x = self.final_norm(x) logits = self.final_proj(x) return logits # [batch_size, seq_length, vocab_size]