step5_data_parallel_naive/data_parallel.py (23 lines of code) (raw):
import contextlib
from typing import List
import torch
import torch.distributed as dist
from torch import nn
import process_group_manager as pgm
### begin Data Parallel (naive)
class DataParallelNaive(nn.Module):
def __init__(self, module):
super().__init__()
self.module = module
# whether to synchronize gradients during backward pass. Set to False when using gradient accumulation
self.require_backward_grad_sync = True
self.register_backward_hook(self._allreduce_grads)
def forward(self, *inputs, **kwargs):
return self.module(*inputs, **kwargs)
def register_backward_hook(self, hook):
"""Registers a backward hook for all parameters of the model that require gradients."""
for p in self.module.parameters():
if p.requires_grad is True:
p.register_hook(hook)
def _allreduce_grads(self, grad):
"""Performs an all-reduce operation to synchronize gradients across multiple processes."""
# No synchronization needed during gradient accumulation, except at the final accumulation step.
if self.require_backward_grad_sync:
dist.all_reduce(grad, op=dist.ReduceOp.SUM, group=pgm.process_group_manager.dp_group)
grad /= pgm.process_group_manager.dp_world_size
return grad
### end Data Parallel (naive)