step5_data_parallel_naive/data_parallel.py (23 lines of code) (raw):

import contextlib from typing import List import torch import torch.distributed as dist from torch import nn import process_group_manager as pgm ### begin Data Parallel (naive) class DataParallelNaive(nn.Module): def __init__(self, module): super().__init__() self.module = module # whether to synchronize gradients during backward pass. Set to False when using gradient accumulation self.require_backward_grad_sync = True self.register_backward_hook(self._allreduce_grads) def forward(self, *inputs, **kwargs): return self.module(*inputs, **kwargs) def register_backward_hook(self, hook): """Registers a backward hook for all parameters of the model that require gradients.""" for p in self.module.parameters(): if p.requires_grad is True: p.register_hook(hook) def _allreduce_grads(self, grad): """Performs an all-reduce operation to synchronize gradients across multiple processes.""" # No synchronization needed during gradient accumulation, except at the final accumulation step. if self.require_backward_grad_sync: dist.all_reduce(grad, op=dist.ReduceOp.SUM, group=pgm.process_group_manager.dp_group) grad /= pgm.process_group_manager.dp_world_size return grad ### end Data Parallel (naive)