step8_pipeline_parallel_1f1b/pipeline_parallel.py (155 lines of code) (raw):
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.distributed as dist
import process_group_manager as pgm
### begin PP communications
STEP, VERBOSE = 0, os.environ.get("VERBOSE", "0") == "1"
def pipeline_communicate(operation, device, dtype, tensor=None, shapes=None):
"""
Handles point-to-point communication between pipeline stages for forward and backward passes.
Args:
operation (str): Type of communication operation ('recv_forward', 'send_forward',
'recv_backward', 'send_backward')
device: Target device for tensor operations (e.g., CPU, GPU)
dtype: Data type for tensors
tensor: Input tensor for send operations (default: None)
shapes: Shape specifications for receiving tensors (default: None)
Returns:
torch.Tensor or None: Received tensor for receive operations, None for send operations
"""
global STEP
global VERBOSE
if operation == 'recv_forward':
# Skip if this is the first pipeline stage (nothing to receive)
if pgm.process_group_manager.pp_is_first_stage: return None
# Create empty tensor to receive data
tensor = torch.empty(shapes, requires_grad=True, device=device, dtype=dtype)
src = pgm.process_group_manager.pp_prev_rank
elif operation == 'send_forward':
# Skip if this is the last pipeline stage (nothing to send forward)
if pgm.process_group_manager.pp_is_last_stage: return
dest = pgm.process_group_manager.pp_next_rank
elif operation == 'recv_backward':
# Skip if this is the last pipeline stage (nothing to receive from backward)
if pgm.process_group_manager.pp_is_last_stage: return None
tensor = torch.empty(shapes, requires_grad=True, device=device, dtype=dtype)
src = pgm.process_group_manager.pp_next_rank
elif operation == 'send_backward':
# Skip if this is the first pipeline stage (nothing to send backward)
if pgm.process_group_manager.pp_is_first_stage: return
dest = pgm.process_group_manager.pp_prev_rank
# Determine if this is a send operation and set peer rank
is_send = operation.startswith('send')
peer_rank = dest if is_send else src
# Create P2P operation (send or receive)
op = dist.P2POp(dist.isend if is_send else dist.irecv, tensor, peer_rank)
if VERBOSE:
print(f"{operation} | {'sending' if is_send else 'receiving'} {operation.split('_')[1]} "
f"{pgm.process_group_manager.pp_rank} {'→' if is_send else '←'} {peer_rank} | "
f"STEP:{STEP} | RANK:{pgm.process_group_manager.pp_rank}", flush=True)
# Execute communication operation and wait for completion
[req.wait() for req in dist.batch_isend_irecv([op])]
torch.cuda.synchronize()
if VERBOSE: STEP += 1
# Return received tensor for receive operations, None for send operations
return tensor if not is_send else None
def bidirectional_pipeline_communicate(operation, send_tensor, recv_shapes, device, dtype):
"""
Handles bidirectional communication between pipeline stages, allowing simultaneous
send and receive operations.
Args:
operation (str): Type of bidirectional operation ('send_fwd_recv_bwd' or 'send_bwd_recv_fwd')
send_tensor: Tensor to be sent
recv_shapes: Shape specifications for the tensor to be received
device: Target device for tensor operations
dtype: Data type for tensors
Returns:
torch.Tensor or None: Received tensor, or None if at terminal pipeline stage
"""
global STEP
global VERBOSE
# Determine if this is a forward operation
is_fwd = (operation == 'send_fwd_recv_bwd')
# Skip if at terminal pipeline stages
if (is_fwd and pgm.process_group_manager.pp_is_last_stage) or \
(not is_fwd and pgm.process_group_manager.pp_is_first_stage):
return None
# Determine peer rank based on operation direction
peer_rank = pgm.process_group_manager.pp_next_rank if is_fwd else pgm.process_group_manager.pp_prev_rank
# Create empty tensor for receiving data
recv_tensor = torch.empty(recv_shapes, requires_grad=True, device=device, dtype=dtype)
# Set up simultaneous send and receive operations
reqs = dist.batch_isend_irecv([
dist.P2POp(dist.isend, send_tensor, peer_rank),
dist.P2POp(dist.irecv, recv_tensor, peer_rank)
])
if VERBOSE:
print(f"{operation} | sending {'next' if is_fwd else 'prev'} "
f"{pgm.process_group_manager.pp_rank} -> {peer_rank} | "
f"receiving {'next' if is_fwd else 'prev'} {peer_rank} -> "
f"{pgm.process_group_manager.pp_rank} | STEP {STEP=} | "
f"RANK:{pgm.process_group_manager.pp_rank}", flush=True)
# Wait for both operations to complete
[req.wait() for req in reqs]
torch.cuda.synchronize()
if VERBOSE: STEP += 1
return recv_tensor
### end PP communications
### begin Pipeline Parallel
class PipelineParallel(nn.Module):
def __init__(self, model, config):
super().__init__()
layer_distribution = self.distribute_layers(config.num_hidden_layers)
self.embedding = model.embedding if pgm.process_group_manager.pp_is_first_stage else nn.Identity()
self.decoder_layers = nn.ModuleDict({str(i): model.decoder_layers[i] for i in layer_distribution})
self.final_norm = model.final_norm if pgm.process_group_manager.pp_is_last_stage else nn.Identity()
self.final_proj = model.final_proj if pgm.process_group_manager.pp_is_last_stage else nn.Identity()
def distribute_layers(self, num_layers):
layers_per_gpu = [num_layers // pgm.process_group_manager.pp_world_size + (1 if i < num_layers % pgm.process_group_manager.pp_world_size else 0) for i in range(pgm.process_group_manager.pp_world_size)]
start_layer = sum(layers_per_gpu[:pgm.process_group_manager.pp_rank])
return list(range(start_layer, start_layer + layers_per_gpu[pgm.process_group_manager.pp_rank]))
def forward(self, input_ids, position_ids, hidden_states):
x = hidden_states if hidden_states is not None else input_ids
x = self.embedding(x)
for layer in self.decoder_layers.values():
x = layer(x, position_ids=position_ids)
x = self.final_norm(x)
return self.final_proj(x)
def backward(self, input_tensor, output_tensor, output_tensor_grad):
if input_tensor is not None: input_tensor.retain_grad()
if output_tensor_grad is None:
output_tensor_grad = torch.ones_like(output_tensor, memory_format=torch.preserve_format)
# torch.autograd.backward will automatically accumulates gradients in the leaves (cf: https://pytorch.org/docs/stable/generated/torch.autograd.backward.html)
torch.autograd.backward(output_tensor, grad_tensors=output_tensor_grad, retain_graph=False, create_graph=False)
return input_tensor.grad if input_tensor is not None else None
def train_step_pipeline_afab(model, data_loader, tensor_shapes, device, dtype):
"""
Executes a training step using Activation Forward - Activation Backward (AFAB) pipeline parallelism.
Implements separate forward and backward passes to optimize memory usage.
"""
logging_loss: torch.float32 = 0.0
input_tensors, output_tensors = [], []
requires_grad_sync = pgm.process_group_manager.dp_world_size > 1
# === All Forward Pass Phase ===
for _ in range(data_loader.grad_acc_steps):
input_tensor = pipeline_communicate(operation='recv_forward', shapes=tensor_shapes, device=device, dtype=dtype)
batch = next(data_loader)
batch["hidden_states"] = input_tensor.to(device) if input_tensor is not None else input_tensor
output_tensor = model.forward(input_ids=batch["input_ids"].to(device), position_ids=batch["position_ids"].to(device), hidden_states=batch["hidden_states"])
pipeline_communicate(operation='send_forward', tensor=output_tensor, device=device, dtype=dtype)
# calculate loss on the last stage
if pgm.process_group_manager.pp_is_last_stage:
output_tensor = F.cross_entropy(output_tensor.transpose(1, 2), batch["target_ids"].to(device), reduction='mean')
logging_loss += output_tensor.item() / data_loader.grad_acc_steps
input_tensors.append(input_tensor)
output_tensors.append(output_tensor)
# === All Backward Pass Phase ===
for ith_microbatch in range(data_loader.grad_acc_steps):
if requires_grad_sync:
is_last_iteration = (ith_microbatch == data_loader.grad_acc_steps - 1)
model.require_backward_grad_sync = is_last_iteration
output_tensor_grad = pipeline_communicate(operation='recv_backward', shapes=tensor_shapes, device=device, dtype=dtype)
input_tensor, output_tensor = input_tensors.pop(0), output_tensors.pop(0)
input_tensor_grad = model.backward(input_tensor, output_tensor, output_tensor_grad)
pipeline_communicate(operation='send_backward', tensor=input_tensor_grad, device=device, dtype=dtype)
return logging_loss
def train_step_pipeline_1f1b(model, data_loader, tensor_shapes, device, dtype):
num_warmup_microbatches = min(pgm.process_group_manager.pp_world_size - pgm.process_group_manager.pp_rank - 1, data_loader.grad_acc_steps)
num_microbatches_remaining = data_loader.grad_acc_steps - num_warmup_microbatches
logging_loss, input_tensors, output_tensors = 0.0, [], []
requires_grad_sync = pgm.process_group_manager.dp_world_size > 1
def _forward_step(input_tensor):
batch = next(data_loader)
batch["hidden_states"] = input_tensor.to(device) if input_tensor is not None else input_tensor
output_tensor = model.forward(input_ids=batch["input_ids"].to(device), position_ids=batch["position_ids"].to(device), hidden_states=batch["hidden_states"])
# calculate loss on the last stage
if pgm.process_group_manager.pp_is_last_stage:
output_tensor = F.cross_entropy(output_tensor.transpose(1, 2), batch["target_ids"].to(device), reduction='mean')
nonlocal logging_loss
logging_loss += output_tensor.item() / data_loader.grad_acc_steps
return output_tensor
# === Warmup forward passes ===
for _ in range(num_warmup_microbatches):
input_tensor = pipeline_communicate(operation='recv_forward', shapes=tensor_shapes, device=device, dtype=dtype)
output_tensor = _forward_step(input_tensor)
pipeline_communicate(operation='send_forward', tensor=output_tensor, device=device, dtype=dtype)
input_tensors.append(input_tensor)
output_tensors.append(output_tensor)
if num_microbatches_remaining > 0:
input_tensor = pipeline_communicate(operation='recv_forward', shapes=tensor_shapes, device=device, dtype=dtype)
if requires_grad_sync:
model.require_backward_grad_sync = False
# === 1F1B steady state ===
for ith_microbatch in range(num_microbatches_remaining):
is_last_iteration = (ith_microbatch == num_microbatches_remaining - 1)
output_tensor = _forward_step(input_tensor)
output_tensor_grad = bidirectional_pipeline_communicate(operation='send_fwd_recv_bwd', send_tensor=output_tensor, recv_shapes=tensor_shapes, device=device, dtype=dtype)
input_tensors.append(input_tensor)
output_tensors.append(output_tensor)
input_tensor, output_tensor = input_tensors.pop(0), output_tensors.pop(0)
# Trigger gradient sync on the last microbatch but only when last rank (the one that has num_warmup_microbatches = 0) has finished computing its backward pass.
if num_warmup_microbatches == 0 and is_last_iteration:
model.require_backward_grad_sync = True
input_tensor_grad = model.backward(input_tensor, output_tensor, output_tensor_grad)
if is_last_iteration:
input_tensor = None
pipeline_communicate(operation='send_backward', tensor=input_tensor_grad, device=device, dtype=dtype)
else:
input_tensor = bidirectional_pipeline_communicate(operation='send_bwd_recv_fwd', send_tensor=input_tensor_grad, recv_shapes=tensor_shapes, device=device, dtype=dtype)
# === Cooldown backward passes ===
for ith_warmup_microbatches in range(num_warmup_microbatches):
if requires_grad_sync:
is_last_iteration = (ith_warmup_microbatches == num_warmup_microbatches - 1)
model.require_backward_grad_sync = (ith_warmup_microbatches == num_warmup_microbatches - 1)
input_tensor, output_tensor = input_tensors.pop(0), output_tensors.pop(0)
output_tensor_grad = pipeline_communicate(operation='recv_backward', shapes=tensor_shapes, device=device, dtype=dtype)
input_tensor_grad = model.backward(input_tensor, output_tensor, output_tensor_grad)
pipeline_communicate(operation='send_backward', tensor=input_tensor_grad, device=device, dtype=dtype)
return logging_loss
### end Pipeline Parallel