timm/models/efficientformer.py [506:540]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
                else:
                    intermediates.append(x)

        if intermediates_only:
            return intermediates

        if feat_idx == last_idx:
            x = self.norm(x)

        return x, intermediates

    def prune_intermediate_layers(
            self,
            indices: Union[int, List[int]] = 1,
            prune_norm: bool = False,
            prune_head: bool = True,
    ):
        """ Prune layers not required for specified intermediates.
        """
        take_indices, max_index = feature_take_indices(len(self.stages), indices)
        self.stages = self.stages[:max_index + 1]  # truncate blocks w/ stem as idx 0
        if prune_norm:
            self.norm = nn.Identity()
        if prune_head:
            self.reset_classifier(0, '')
        return take_indices

    def forward_features(self, x):
        x = self.stem(x)
        x = self.stages(x)
        x = self.norm(x)
        return x

    def forward_head(self, x, pre_logits: bool = False):
        if self.global_pool == 'avg':
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



timm/models/efficientformer_v2.py [669:703]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
                else:
                    intermediates.append(x)

        if intermediates_only:
            return intermediates

        if feat_idx == last_idx:
            x = self.norm(x)

        return x, intermediates

    def prune_intermediate_layers(
            self,
            indices: Union[int, List[int]] = 1,
            prune_norm: bool = False,
            prune_head: bool = True,
    ):
        """ Prune layers not required for specified intermediates.
        """
        take_indices, max_index = feature_take_indices(len(self.stages), indices)
        self.stages = self.stages[:max_index + 1]  # truncate blocks w/ stem as idx 0
        if prune_norm:
            self.norm = nn.Identity()
        if prune_head:
            self.reset_classifier(0, '')
        return take_indices

    def forward_features(self, x):
        x = self.stem(x)
        x = self.stages(x)
        x = self.norm(x)
        return x

    def forward_head(self, x, pre_logits: bool = False):
        if self.global_pool == 'avg':
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



