timm/models/metaformer.py [628:658]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        if torch.jit.is_scripting() or not stop_early:  # can't slice blocks in torchscript
            stages = self.stages
        else:
            stages = self.stages[:max_index + 1]

        for feat_idx, stage in enumerate(stages):
            if self.grad_checkpointing and not torch.jit.is_scripting():
                x = checkpoint(stage, x)
            else:
                x = stage(x)
            if feat_idx in take_indices:
                intermediates.append(x)

        if intermediates_only:
            return intermediates

        return x, intermediates

    def prune_intermediate_layers(
            self,
            indices: Union[int, List[int]] = 1,
            prune_norm: bool = False,
            prune_head: bool = True,
    ):
        """ Prune layers not required for specified intermediates.
        """
        take_indices, max_index = feature_take_indices(len(self.stages), indices)
        self.stages = self.stages[:max_index + 1]  # truncate blocks w/ stem as idx 0
        if prune_head:
            self.reset_classifier(0, '')
        return take_indices
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



timm/models/tiny_vit.py [567:597]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        if torch.jit.is_scripting() or not stop_early:  # can't slice blocks in torchscript
            stages = self.stages
        else:
            stages = self.stages[:max_index + 1]

        for feat_idx, stage in enumerate(stages):
            if self.grad_checkpointing and not torch.jit.is_scripting():
                x = checkpoint(stage, x)
            else:
                x = stage(x)
            if feat_idx in take_indices:
                intermediates.append(x)

        if intermediates_only:
            return intermediates

        return x, intermediates

    def prune_intermediate_layers(
            self,
            indices: Union[int, List[int]] = 1,
            prune_norm: bool = False,
            prune_head: bool = True,
    ):
        """ Prune layers not required for specified intermediates.
        """
        take_indices, max_index = feature_take_indices(len(self.stages), indices)
        self.stages = self.stages[:max_index + 1]  # truncate blocks w/ stem as idx 0
        if prune_head:
            self.reset_classifier(0, '')
        return take_indices
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



