in timm/models/_hub.py [0:0]
def generate_readme(model_card: dict, model_name: str):
tags = model_card.get('tags', None) or ['image-classification', 'timm', 'transformers']
readme_text = "---\n"
if tags:
readme_text += "tags:\n"
for t in tags:
readme_text += f"- {t}\n"
readme_text += f"library_name: {model_card.get('library_name', 'timm')}\n"
readme_text += f"license: {model_card.get('license', 'apache-2.0')}\n"
if 'license_name' in model_card:
readme_text += f"license_name: {model_card.get('license_name')}\n"
if 'license_link' in model_card:
readme_text += f"license_link: {model_card.get('license_link')}\n"
if 'details' in model_card and 'Dataset' in model_card['details']:
readme_text += 'datasets:\n'
if isinstance(model_card['details']['Dataset'], (tuple, list)):
for d in model_card['details']['Dataset']:
readme_text += f"- {d.lower()}\n"
else:
readme_text += f"- {model_card['details']['Dataset'].lower()}\n"
if 'Pretrain Dataset' in model_card['details']:
if isinstance(model_card['details']['Pretrain Dataset'], (tuple, list)):
for d in model_card['details']['Pretrain Dataset']:
readme_text += f"- {d.lower()}\n"
else:
readme_text += f"- {model_card['details']['Pretrain Dataset'].lower()}\n"
readme_text += "---\n"
readme_text += f"# Model card for {model_name}\n"
if 'description' in model_card:
readme_text += f"\n{model_card['description']}\n"
if 'details' in model_card:
readme_text += f"\n## Model Details\n"
for k, v in model_card['details'].items():
if isinstance(v, (list, tuple)):
readme_text += f"- **{k}:**\n"
for vi in v:
readme_text += f" - {vi}\n"
elif isinstance(v, dict):
readme_text += f"- **{k}:**\n"
for ki, vi in v.items():
readme_text += f" - {ki}: {vi}\n"
else:
readme_text += f"- **{k}:** {v}\n"
if 'usage' in model_card:
readme_text += f"\n## Model Usage\n"
readme_text += model_card['usage']
readme_text += '\n'
if 'comparison' in model_card:
readme_text += f"\n## Model Comparison\n"
readme_text += model_card['comparison']
readme_text += '\n'
if 'citation' in model_card:
readme_text += f"\n## Citation\n"
if not isinstance(model_card['citation'], (list, tuple)):
citations = [model_card['citation']]
else:
citations = model_card['citation']
for c in citations:
readme_text += f"```bibtex\n{c}\n```\n"
return readme_text