def step()

in timm/optim/lamb.py [0:0]


    def step(self, closure=None):
        """Performs a single optimization step.
        Arguments:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        loss = None
        if closure is not None:
            with torch.enable_grad():
                loss = closure()

        clip_grad_norm = self._get_clip_grad_norm() # None if disabled

        for group in self.param_groups:
            bias_correction = 1 if group['bias_correction'] else 0
            beta1, beta2 = group['betas']
            grad_averaging = 1 if group['grad_averaging'] else 0
            beta3 = 1 - beta1 if grad_averaging else 1.0

            # assume same step across group now to simplify things
            # per parameter step can be easily support by making it tensor, or pass list into kernel
            if 'step' in group:
                group['step'] += 1
            else:
                group['step'] = 1

            if bias_correction:
                bias_correction1 = 1 - beta1 ** group['step']
                bias_correction2 = 1 - beta2 ** group['step']
            else:
                bias_correction1, bias_correction2 = 1.0, 1.0

            for p in group['params']:
                if p.grad is None:
                    continue
                grad = p.grad

                if clip_grad_norm is not None:
                    grad.div_(clip_grad_norm)

                state = self.state[p]

                # State initialization
                if len(state) == 0:
                    # Exponential moving average of gradient valuesa
                    state['exp_avg'] = torch.zeros_like(p)
                    # Exponential moving average of squared gradient values
                    state['exp_avg_sq'] = torch.zeros_like(p)

                exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']

                # Decay the first and second moment running average coefficient
                exp_avg.mul_(beta1).add_(grad, alpha=beta3)  # m_t
                exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)  # v_t

                denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(group['eps'])
                update = (exp_avg / bias_correction1).div_(denom)

                if group['caution']:
                    # Apply caution as per 'Cautious Optimizers' - https://arxiv.org/abs/2411.16085
                    mask = (update * grad > 0).to(grad.dtype)
                    mask.div_(mask.mean().clamp_(min=1e-3))
                    update.mul_(mask)

                weight_decay = group['weight_decay']
                if weight_decay != 0:
                    if group.get('decoupled_decay', False):
                        if group['corrected_weight_decay']:
                            wd_scale = group['lr'] ** 2 / self.defaults['lr']
                        else:
                            wd_scale = group['lr']
                        p.add_(p, alpha=-wd_scale * weight_decay)
                    else:
                        update.add_(p, alpha=weight_decay)

                if weight_decay != 0 or group['always_adapt']:
                    # Layer-wise LR adaptation. By default, skip adaptation on parameters that are
                    # excluded from weight decay, unless always_adapt == True, then always enabled.
                    w_norm = p.norm(2.0)
                    g_norm = update.norm(2.0)
                    trust_ratio = w_norm / g_norm
                    # FIXME nested where required since logical and/or not working in PT XLA
                    # Set the ratio to 1.0 (no change) if either weight norm or grad norm is zero
                    trust_ratio = torch.where(
                        w_norm > 0,
                        torch.where(g_norm > 0, trust_ratio, 1.0),
                        1.0,
                    )
                    if group['trust_clip']:
                        # LAMBC trust clipping, upper bound fixed at one
                        trust_ratio = torch.clamp(trust_ratio, max=1.0)
                    update.mul_(trust_ratio)

                p.add_(update, alpha=-group['lr'])

        return loss