in timm/optim/adafactor.py [0:0]
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model and returns the loss.
"""
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad
if grad.dtype in {torch.float16, torch.bfloat16}:
grad = grad.float()
if grad.is_sparse:
raise RuntimeError('Adafactor does not support sparse gradients.')
state = self.state[p]
factored_dims, use_first_moment = self._get_options(
group,
grad.shape,
min_size_to_factor=group['min_dim_size_to_factor'],
)
# State Initialization
if len(state) == 0:
state['step'] = 0
if use_first_moment:
# Exponential moving average of gradient values
state['exp_avg'] = torch.zeros_like(grad)
if factored_dims is not None:
dim_col, dim_row = factored_dims
def _remove_dim(shape, dim):
return shape[:dim] + shape[dim + 1:]
state['exp_avg_sq_row'] = torch.zeros(_remove_dim(grad.shape, dim_row)).to(grad)
state['exp_avg_sq_col'] = torch.zeros(_remove_dim(grad.shape, dim_col)).to(grad)
else:
state['exp_avg_sq'] = torch.zeros_like(grad)
state['RMS'] = 0
else:
if use_first_moment:
state['exp_avg'] = state['exp_avg'].to(grad)
if factored_dims is not None:
state['exp_avg_sq_row'] = state['exp_avg_sq_row'].to(grad)
state['exp_avg_sq_col'] = state['exp_avg_sq_col'].to(grad)
else:
state['exp_avg_sq'] = state['exp_avg_sq'].to(grad)
p_fp32 = p
if p.dtype in {torch.float16, torch.bfloat16}:
p_fp32 = p_fp32.float()
state['step'] += 1
state['RMS'] = self._rms(p_fp32)
lr_t = self._get_lr(group, state)
beta2t = 1.0 - math.pow(state['step'], group['decay_rate'])
update = grad ** 2 + group['eps']
if factored_dims is not None:
dim_col, dim_row = factored_dims
exp_avg_sq_row = state['exp_avg_sq_row']
exp_avg_sq_col = state['exp_avg_sq_col']
exp_avg_sq_row.mul_(beta2t).add_(update.mean(dim=dim_row), alpha=1.0 - beta2t)
exp_avg_sq_col.mul_(beta2t).add_(update.mean(dim=dim_col), alpha=1.0 - beta2t)
# Approximation of exponential moving average of square of gradient
update = self._approx_sq_grad(exp_avg_sq_row, exp_avg_sq_col, dim_col, dim_row)
update.mul_(grad)
else:
exp_avg_sq = state['exp_avg_sq']
exp_avg_sq.mul_(beta2t).add_(update, alpha=1.0 - beta2t)
update = exp_avg_sq.rsqrt().mul_(grad)
update.div_((self._rms(update) / group['clip_threshold']).clamp_(min=1.0))
update.mul_(lr_t)
if use_first_moment:
exp_avg = state['exp_avg']
exp_avg.mul_(group['beta1']).add_(update, alpha=1 - group['beta1'])
if group['caution']:
# Apply caution as per 'Cautious Optimizers' - https://arxiv.org/abs/2411.16085
mask = (exp_avg * grad > 0).to(grad.dtype)
mask.div_(mask.mean().clamp_(min=1e-3))
update = exp_avg * mask
else:
update = exp_avg
if group['weight_decay'] != 0:
p_fp32.add_(p_fp32, alpha=-group['weight_decay'] * lr_t)
p_fp32.add_(-update)
if p.dtype in {torch.float16, torch.bfloat16}:
p.copy_(p_fp32)
return loss