in convert/convert_from_mxnet.py [0:0]
def convert(mxnet_name, torch_name):
# download and load the pre-trained model
net = gluoncv.model_zoo.get_model(mxnet_name, pretrained=True)
# create corresponding torch model
torch_net = create_model(torch_name)
mxp = [(k, v) for k, v in net.collect_params().items() if 'running' not in k]
torchp = list(torch_net.named_parameters())
torch_params = {}
# convert parameters
# NOTE: we are relying on the fact that the order of parameters
# are usually exactly the same between these models, thus no key name mapping
# is necessary. Asserts will trip if this is not the case.
for (tn, tv), (mn, mv) in zip(torchp, mxp):
m_split = mn.split('_')
t_split = tn.split('.')
print(t_split, m_split)
print(tv.shape, mv.shape)
# ensure ordering of BN params match since their sizes are not specific
if m_split[-1] == 'gamma':
assert t_split[-1] == 'weight'
if m_split[-1] == 'beta':
assert t_split[-1] == 'bias'
# ensure shapes match
assert all(t == m for t, m in zip(tv.shape, mv.shape))
torch_tensor = torch.from_numpy(mv.data().asnumpy())
torch_params[tn] = torch_tensor
# convert buffers (batch norm running stats)
mxb = [(k, v) for k, v in net.collect_params().items() if any(x in k for x in ['running_mean', 'running_var'])]
torchb = [(k, v) for k, v in torch_net.named_buffers() if 'num_batches' not in k]
for (tn, tv), (mn, mv) in zip(torchb, mxb):
print(tn, mn)
print(tv.shape, mv.shape)
# ensure ordering of BN params match since their sizes are not specific
if 'running_var' in tn:
assert 'running_var' in mn
if 'running_mean' in tn:
assert 'running_mean' in mn
torch_tensor = torch.from_numpy(mv.data().asnumpy())
torch_params[tn] = torch_tensor
torch_net.load_state_dict(torch_params)
torch_filename = './%s.pth' % torch_name
torch.save(torch_net.state_dict(), torch_filename)
with open(torch_filename, 'rb') as f:
sha_hash = hashlib.sha256(f.read()).hexdigest()
final_filename = os.path.splitext(torch_filename)[0] + '-' + sha_hash[:8] + '.pth'
os.rename(torch_filename, final_filename)
print("=> Saved converted model to '{}, SHA256: {}'".format(final_filename, sha_hash))