in timm/optim/lars.py [0:0]
def step(self, closure=None):
"""Performs a single optimization step.
Args:
closure (callable, optional): A closure that reevaluates the model and returns the loss.
"""
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
for group in self.param_groups:
weight_decay = group['weight_decay']
momentum = group['momentum']
dampening = group['dampening']
nesterov = group['nesterov']
trust_coeff = group['trust_coeff']
eps = group['eps']
for p in group['params']:
if p.grad is None:
continue
grad = p.grad
# apply LARS LR adaptation, LARC clipping, weight decay
# ref: https://github.com/NVIDIA/apex/blob/master/apex/parallel/LARC.py
if weight_decay != 0 or group['always_adapt']:
w_norm = p.norm(2.0)
g_norm = grad.norm(2.0)
trust_ratio = trust_coeff * w_norm / (g_norm + w_norm * weight_decay + eps)
# FIXME nested where required since logical and/or not working in PT XLA
# Set the ratio to 1.0 (no change) if either weight norm or grad norm is zero
trust_ratio = torch.where(
w_norm > 0,
torch.where(g_norm > 0, trust_ratio, 1.0),
1.0,
)
if group['trust_clip']:
trust_ratio = torch.clamp(trust_ratio / group['lr'], max=1.0)
grad.add_(p, alpha=weight_decay)
grad.mul_(trust_ratio)
# apply SGD update https://github.com/pytorch/pytorch/blob/1.7/torch/optim/sgd.py#L100
if momentum != 0:
param_state = self.state[p]
if 'momentum_buffer' not in param_state:
buf = param_state['momentum_buffer'] = torch.clone(grad).detach()
else:
buf = param_state['momentum_buffer']
buf.mul_(momentum).add_(grad, alpha=1. - dampening)
if nesterov:
grad = grad.add(buf, alpha=momentum)
else:
grad = buf
p.add_(grad, alpha=-group['lr'])
return loss