in timm/models/coat.py [0:0]
def checkpoint_filter_fn(state_dict, model):
out_dict = {}
state_dict = state_dict.get('model', state_dict)
for k, v in state_dict.items():
# original model had unused norm layers, removing them requires filtering pretrained checkpoints
if k.startswith('norm1') or \
(k.startswith('norm2') and getattr(model, 'norm2', None) is None) or \
(k.startswith('norm3') and getattr(model, 'norm3', None) is None) or \
(k.startswith('norm4') and getattr(model, 'norm4', None) is None) or \
(k.startswith('aggregate') and getattr(model, 'aggregate', None) is None) or \
(k.startswith('head') and getattr(model, 'head', None) is None):
continue
out_dict[k] = v
return out_dict