def fast_collate()

in timm/data/loader.py [0:0]


def fast_collate(batch):
    """ A fast collation function optimized for uint8 images (np array or torch) and int64 targets (labels)"""
    assert isinstance(batch[0], tuple)
    batch_size = len(batch)
    if isinstance(batch[0][0], tuple):
        # This branch 'deinterleaves' and flattens tuples of input tensors into one tensor ordered by position
        # such that all tuple of position n will end up in a torch.split(tensor, batch_size) in nth position
        is_np = isinstance(batch[0][0], np.ndarray)
        inner_tuple_size = len(batch[0][0])
        flattened_batch_size = batch_size * inner_tuple_size
        targets = torch.zeros(flattened_batch_size, dtype=torch.int64)
        tensor = torch.zeros((flattened_batch_size, *batch[0][0][0].shape), dtype=torch.uint8)
        for i in range(batch_size):
            assert len(batch[i][0]) == inner_tuple_size  # all input tensor tuples must be same length
            for j in range(inner_tuple_size):
                targets[i + j * batch_size] = batch[i][1]
                if is_np:
                    tensor[i + j * batch_size] += torch.from_numpy(batch[i][0][j])
                else:
                    tensor[i + j * batch_size] += batch[i][0][j]
        return tensor, targets
    elif isinstance(batch[0][0], np.ndarray):
        targets = torch.tensor([b[1] for b in batch], dtype=torch.int64)
        assert len(targets) == batch_size
        tensor = torch.zeros((batch_size, *batch[0][0].shape), dtype=torch.uint8)
        for i in range(batch_size):
            tensor[i] += torch.from_numpy(batch[i][0])
        return tensor, targets
    elif isinstance(batch[0][0], torch.Tensor):
        targets = torch.tensor([b[1] for b in batch], dtype=torch.int64)
        assert len(targets) == batch_size
        tensor = torch.zeros((batch_size, *batch[0][0].shape), dtype=torch.uint8)
        for i in range(batch_size):
            tensor[i].copy_(batch[i][0])
        return tensor, targets
    else:
        assert False