timm/models/densenet.py (328 lines of code) (raw):

"""Pytorch Densenet implementation w/ tweaks This file is a copy of https://github.com/pytorch/vision 'densenet.py' (BSD-3-Clause) with fixed kwargs passthrough and addition of dynamic global avg/max pool. """ import re from collections import OrderedDict from typing import Any, Dict, Optional, Tuple, Union import torch import torch.nn as nn import torch.nn.functional as F from torch.jit.annotations import List from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.layers import BatchNormAct2d, get_norm_act_layer, BlurPool2d, create_classifier from ._builder import build_model_with_cfg from ._manipulate import MATCH_PREV_GROUP, checkpoint from ._registry import register_model, generate_default_cfgs, register_model_deprecations __all__ = ['DenseNet'] class DenseLayer(nn.Module): """Dense layer for DenseNet. Implements the bottleneck layer with 1x1 and 3x3 convolutions. """ def __init__( self, num_input_features: int, growth_rate: int, bn_size: int, norm_layer: type = BatchNormAct2d, drop_rate: float = 0., grad_checkpointing: bool = False, ) -> None: """Initialize DenseLayer. Args: num_input_features: Number of input features. growth_rate: Growth rate (k) of the layer. bn_size: Bottleneck size multiplier. norm_layer: Normalization layer class. drop_rate: Dropout rate. grad_checkpointing: Use gradient checkpointing. """ super(DenseLayer, self).__init__() self.add_module('norm1', norm_layer(num_input_features)), self.add_module('conv1', nn.Conv2d( num_input_features, bn_size * growth_rate, kernel_size=1, stride=1, bias=False)), self.add_module('norm2', norm_layer(bn_size * growth_rate)), self.add_module('conv2', nn.Conv2d( bn_size * growth_rate, growth_rate, kernel_size=3, stride=1, padding=1, bias=False)), self.drop_rate = float(drop_rate) self.grad_checkpointing = grad_checkpointing def bottleneck_fn(self, xs: List[torch.Tensor]) -> torch.Tensor: """Bottleneck function for concatenated features.""" concated_features = torch.cat(xs, 1) bottleneck_output = self.conv1(self.norm1(concated_features)) # noqa: T484 return bottleneck_output # todo: rewrite when torchscript supports any def any_requires_grad(self, x: List[torch.Tensor]) -> bool: """Check if any tensor in list requires gradient.""" for tensor in x: if tensor.requires_grad: return True return False @torch.jit.unused # noqa: T484 def call_checkpoint_bottleneck(self, x: List[torch.Tensor]) -> torch.Tensor: """Call bottleneck function with gradient checkpointing.""" def closure(*xs): return self.bottleneck_fn(xs) return checkpoint(closure, *x) @torch.jit._overload_method # noqa: F811 def forward(self, x): # type: (List[torch.Tensor]) -> (torch.Tensor) pass @torch.jit._overload_method # noqa: F811 def forward(self, x): # type: (torch.Tensor) -> (torch.Tensor) pass # torchscript does not yet support *args, so we overload method # allowing it to take either a List[Tensor] or single Tensor def forward(self, x: Union[torch.Tensor, List[torch.Tensor]]) -> torch.Tensor: # noqa: F811 """Forward pass. Args: x: Input features (single tensor or list of tensors). Returns: New features to be concatenated. """ if isinstance(x, torch.Tensor): prev_features = [x] else: prev_features = x if self.grad_checkpointing and self.any_requires_grad(prev_features): if torch.jit.is_scripting(): raise Exception("Memory Efficient not supported in JIT") bottleneck_output = self.call_checkpoint_bottleneck(prev_features) else: bottleneck_output = self.bottleneck_fn(prev_features) new_features = self.conv2(self.norm2(bottleneck_output)) if self.drop_rate > 0: new_features = F.dropout(new_features, p=self.drop_rate, training=self.training) return new_features class DenseBlock(nn.ModuleDict): """DenseNet Block. Contains multiple dense layers with concatenated features. """ _version = 2 def __init__( self, num_layers: int, num_input_features: int, bn_size: int, growth_rate: int, norm_layer: type = BatchNormAct2d, drop_rate: float = 0., grad_checkpointing: bool = False, ) -> None: """Initialize DenseBlock. Args: num_layers: Number of layers in the block. num_input_features: Number of input features. bn_size: Bottleneck size multiplier. growth_rate: Growth rate (k) for each layer. norm_layer: Normalization layer class. drop_rate: Dropout rate. grad_checkpointing: Use gradient checkpointing. """ super(DenseBlock, self).__init__() for i in range(num_layers): layer = DenseLayer( num_input_features + i * growth_rate, growth_rate=growth_rate, bn_size=bn_size, norm_layer=norm_layer, drop_rate=drop_rate, grad_checkpointing=grad_checkpointing, ) self.add_module('denselayer%d' % (i + 1), layer) def forward(self, init_features: torch.Tensor) -> torch.Tensor: """Forward pass through all layers in the block. Args: init_features: Initial features from previous layer. Returns: Concatenated features from all layers. """ features = [init_features] for name, layer in self.items(): new_features = layer(features) features.append(new_features) return torch.cat(features, 1) class DenseTransition(nn.Sequential): """Transition layer between DenseNet blocks. Reduces feature dimensions and spatial resolution. """ def __init__( self, num_input_features: int, num_output_features: int, norm_layer: type = BatchNormAct2d, aa_layer: Optional[type] = None, ) -> None: """Initialize DenseTransition. Args: num_input_features: Number of input features. num_output_features: Number of output features. norm_layer: Normalization layer class. aa_layer: Anti-aliasing layer class. """ super(DenseTransition, self).__init__() self.add_module('norm', norm_layer(num_input_features)) self.add_module('conv', nn.Conv2d( num_input_features, num_output_features, kernel_size=1, stride=1, bias=False)) if aa_layer is not None: self.add_module('pool', aa_layer(num_output_features, stride=2)) else: self.add_module('pool', nn.AvgPool2d(kernel_size=2, stride=2)) class DenseNet(nn.Module): """Densenet-BC model class. Based on `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_ Args: growth_rate: How many filters to add each layer (`k` in paper). block_config: How many layers in each pooling block. bn_size: Multiplicative factor for number of bottle neck layers (i.e. bn_size * k features in the bottleneck layer). drop_rate: Dropout rate before classifier layer. proj_drop_rate: Dropout rate after each dense layer. num_classes: Number of classification classes. memory_efficient: If True, uses checkpointing. Much more memory efficient, but slower. Default: *False*. See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_. """ def __init__( self, growth_rate: int = 32, block_config: Tuple[int, ...] = (6, 12, 24, 16), num_classes: int = 1000, in_chans: int = 3, global_pool: str = 'avg', bn_size: int = 4, stem_type: str = '', act_layer: str = 'relu', norm_layer: str = 'batchnorm2d', aa_layer: Optional[type] = None, drop_rate: float = 0., proj_drop_rate: float = 0., memory_efficient: bool = False, aa_stem_only: bool = True, ) -> None: """Initialize DenseNet. Args: growth_rate: How many filters to add each layer (k in paper). block_config: How many layers in each pooling block. num_classes: Number of classification classes. in_chans: Number of input channels. global_pool: Global pooling type. bn_size: Multiplicative factor for number of bottle neck layers. stem_type: Type of stem ('', 'deep', 'deep_tiered'). act_layer: Activation layer. norm_layer: Normalization layer. aa_layer: Anti-aliasing layer. drop_rate: Dropout rate before classifier layer. proj_drop_rate: Dropout rate after each dense layer. memory_efficient: If True, uses checkpointing for memory efficiency. aa_stem_only: Apply anti-aliasing only to stem. """ self.num_classes = num_classes super(DenseNet, self).__init__() norm_layer = get_norm_act_layer(norm_layer, act_layer=act_layer) # Stem deep_stem = 'deep' in stem_type # 3x3 deep stem num_init_features = growth_rate * 2 if aa_layer is None: stem_pool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) else: stem_pool = nn.Sequential(*[ nn.MaxPool2d(kernel_size=3, stride=1, padding=1), aa_layer(channels=num_init_features, stride=2)]) if deep_stem: stem_chs_1 = stem_chs_2 = growth_rate if 'tiered' in stem_type: stem_chs_1 = 3 * (growth_rate // 4) stem_chs_2 = num_init_features if 'narrow' in stem_type else 6 * (growth_rate // 4) self.features = nn.Sequential(OrderedDict([ ('conv0', nn.Conv2d(in_chans, stem_chs_1, 3, stride=2, padding=1, bias=False)), ('norm0', norm_layer(stem_chs_1)), ('conv1', nn.Conv2d(stem_chs_1, stem_chs_2, 3, stride=1, padding=1, bias=False)), ('norm1', norm_layer(stem_chs_2)), ('conv2', nn.Conv2d(stem_chs_2, num_init_features, 3, stride=1, padding=1, bias=False)), ('norm2', norm_layer(num_init_features)), ('pool0', stem_pool), ])) else: self.features = nn.Sequential(OrderedDict([ ('conv0', nn.Conv2d(in_chans, num_init_features, kernel_size=7, stride=2, padding=3, bias=False)), ('norm0', norm_layer(num_init_features)), ('pool0', stem_pool), ])) self.feature_info = [ dict(num_chs=num_init_features, reduction=2, module=f'features.norm{2 if deep_stem else 0}')] current_stride = 4 # DenseBlocks num_features = num_init_features for i, num_layers in enumerate(block_config): block = DenseBlock( num_layers=num_layers, num_input_features=num_features, bn_size=bn_size, growth_rate=growth_rate, norm_layer=norm_layer, drop_rate=proj_drop_rate, grad_checkpointing=memory_efficient, ) module_name = f'denseblock{(i + 1)}' self.features.add_module(module_name, block) num_features = num_features + num_layers * growth_rate transition_aa_layer = None if aa_stem_only else aa_layer if i != len(block_config) - 1: self.feature_info += [ dict(num_chs=num_features, reduction=current_stride, module='features.' + module_name)] current_stride *= 2 trans = DenseTransition( num_input_features=num_features, num_output_features=num_features // 2, norm_layer=norm_layer, aa_layer=transition_aa_layer, ) self.features.add_module(f'transition{i + 1}', trans) num_features = num_features // 2 # Final batch norm self.features.add_module('norm5', norm_layer(num_features)) self.feature_info += [dict(num_chs=num_features, reduction=current_stride, module='features.norm5')] self.num_features = self.head_hidden_size = num_features # Linear layer global_pool, classifier = create_classifier( self.num_features, self.num_classes, pool_type=global_pool, ) self.global_pool = global_pool self.head_drop = nn.Dropout(drop_rate) self.classifier = classifier # Official init from torch repo. for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.constant_(m.bias, 0) @torch.jit.ignore def group_matcher(self, coarse: bool = False) -> Dict[str, Any]: """Group parameters for optimization.""" matcher = dict( stem=r'^features\.conv[012]|features\.norm[012]|features\.pool[012]', blocks=r'^features\.(?:denseblock|transition)(\d+)' if coarse else [ (r'^features\.denseblock(\d+)\.denselayer(\d+)', None), (r'^features\.transition(\d+)', MATCH_PREV_GROUP) # FIXME combine with previous denselayer ] ) return matcher @torch.jit.ignore def set_grad_checkpointing(self, enable: bool = True) -> None: """Enable or disable gradient checkpointing.""" for b in self.features.modules(): if isinstance(b, DenseLayer): b.grad_checkpointing = enable @torch.jit.ignore def get_classifier(self) -> nn.Module: """Get the classifier head.""" return self.classifier def reset_classifier(self, num_classes: int, global_pool: str = 'avg') -> None: """Reset the classifier head. Args: num_classes: Number of classes for new classifier. global_pool: Global pooling type. """ self.num_classes = num_classes self.global_pool, self.classifier = create_classifier( self.num_features, self.num_classes, pool_type=global_pool) def forward_features(self, x: torch.Tensor) -> torch.Tensor: """Forward pass through feature extraction layers.""" return self.features(x) def forward_head(self, x: torch.Tensor, pre_logits: bool = False) -> torch.Tensor: """Forward pass through classifier head. Args: x: Feature tensor. pre_logits: Return features before final classifier. Returns: Output tensor. """ x = self.global_pool(x) x = self.head_drop(x) return x if pre_logits else self.classifier(x) def forward(self, x: torch.Tensor) -> torch.Tensor: """Forward pass. Args: x: Input tensor. Returns: Output logits. """ x = self.forward_features(x) x = self.forward_head(x) return x def _filter_torchvision_pretrained(state_dict: dict) -> Dict[str, torch.Tensor]: """Filter torchvision pretrained state dict for compatibility. Args: state_dict: State dictionary from torchvision checkpoint. Returns: Filtered state dictionary. """ pattern = re.compile( r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$') for key in list(state_dict.keys()): res = pattern.match(key) if res: new_key = res.group(1) + res.group(2) state_dict[new_key] = state_dict[key] del state_dict[key] return state_dict def _create_densenet( variant: str, growth_rate: int, block_config: Tuple[int, ...], pretrained: bool, **kwargs, ) -> DenseNet: """Create a DenseNet model. Args: variant: Model variant name. growth_rate: Growth rate parameter. block_config: Block configuration. pretrained: Load pretrained weights. **kwargs: Additional model arguments. Returns: DenseNet model instance. """ kwargs['growth_rate'] = growth_rate kwargs['block_config'] = block_config return build_model_with_cfg( DenseNet, variant, pretrained, feature_cfg=dict(flatten_sequential=True), pretrained_filter_fn=_filter_torchvision_pretrained, **kwargs, ) def _cfg(url: str = '', **kwargs) -> Dict[str, Any]: """Create default configuration for DenseNet models.""" return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'features.conv0', 'classifier': 'classifier', **kwargs, } default_cfgs = generate_default_cfgs({ 'densenet121.ra_in1k': _cfg( hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=0.95), 'densenetblur121d.ra_in1k': _cfg( hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=0.95), 'densenet264d.untrained': _cfg(), 'densenet121.tv_in1k': _cfg(hf_hub_id='timm/'), 'densenet169.tv_in1k': _cfg(hf_hub_id='timm/'), 'densenet201.tv_in1k': _cfg(hf_hub_id='timm/'), 'densenet161.tv_in1k': _cfg(hf_hub_id='timm/'), }) @register_model def densenet121(pretrained=False, **kwargs) -> DenseNet: r"""Densenet-121 model from `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>` """ model_args = dict(growth_rate=32, block_config=(6, 12, 24, 16)) model = _create_densenet('densenet121', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def densenetblur121d(pretrained=False, **kwargs) -> DenseNet: r"""Densenet-121 w/ blur-pooling & 3-layer 3x3 stem `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>` """ model_args = dict(growth_rate=32, block_config=(6, 12, 24, 16), stem_type='deep', aa_layer=BlurPool2d) model = _create_densenet('densenetblur121d', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def densenet169(pretrained=False, **kwargs) -> DenseNet: r"""Densenet-169 model from `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>` """ model_args = dict(growth_rate=32, block_config=(6, 12, 32, 32)) model = _create_densenet('densenet169', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def densenet201(pretrained=False, **kwargs) -> DenseNet: r"""Densenet-201 model from `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>` """ model_args = dict(growth_rate=32, block_config=(6, 12, 48, 32)) model = _create_densenet('densenet201', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def densenet161(pretrained=False, **kwargs) -> DenseNet: r"""Densenet-161 model from `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>` """ model_args = dict(growth_rate=48, block_config=(6, 12, 36, 24)) model = _create_densenet('densenet161', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def densenet264d(pretrained=False, **kwargs) -> DenseNet: r"""Densenet-264 model from `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>` """ model_args = dict(growth_rate=48, block_config=(6, 12, 64, 48), stem_type='deep') model = _create_densenet('densenet264d', pretrained=pretrained, **dict(model_args, **kwargs)) return model register_model_deprecations(__name__, { 'tv_densenet121': 'densenet121.tv_in1k', })