timm/models/volo.py (763 lines of code) (raw):
""" Vision OutLOoker (VOLO) implementation
Paper: `VOLO: Vision Outlooker for Visual Recognition` - https://arxiv.org/abs/2106.13112
Code adapted from official impl at https://github.com/sail-sg/volo, original copyright in comment below
Modifications and additions for timm by / Copyright 2022, Ross Wightman
"""
# Copyright 2021 Sea Limited.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.layers import DropPath, Mlp, to_2tuple, to_ntuple, trunc_normal_, use_fused_attn
from ._builder import build_model_with_cfg
from ._features import feature_take_indices
from ._manipulate import checkpoint
from ._registry import register_model, generate_default_cfgs
__all__ = ['VOLO'] # model_registry will add each entrypoint fn to this
class OutlookAttention(nn.Module):
"""Outlook attention mechanism for VOLO models."""
def __init__(
self,
dim: int,
num_heads: int,
kernel_size: int = 3,
padding: int = 1,
stride: int = 1,
qkv_bias: bool = False,
attn_drop: float = 0.,
proj_drop: float = 0.,
):
"""Initialize OutlookAttention.
Args:
dim: Input feature dimension.
num_heads: Number of attention heads.
kernel_size: Kernel size for attention computation.
padding: Padding for attention computation.
stride: Stride for attention computation.
qkv_bias: Whether to use bias in linear layers.
attn_drop: Attention dropout rate.
proj_drop: Projection dropout rate.
"""
super().__init__()
head_dim = dim // num_heads
self.num_heads = num_heads
self.kernel_size = kernel_size
self.padding = padding
self.stride = stride
self.scale = head_dim ** -0.5
self.v = nn.Linear(dim, dim, bias=qkv_bias)
self.attn = nn.Linear(dim, kernel_size ** 4 * num_heads)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.unfold = nn.Unfold(kernel_size=kernel_size, padding=padding, stride=stride)
self.pool = nn.AvgPool2d(kernel_size=stride, stride=stride, ceil_mode=True)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Forward pass.
Args:
x: Input tensor of shape (B, H, W, C).
Returns:
Output tensor of shape (B, H, W, C).
"""
B, H, W, C = x.shape
v = self.v(x).permute(0, 3, 1, 2) # B, C, H, W
h, w = math.ceil(H / self.stride), math.ceil(W / self.stride)
v = self.unfold(v).reshape(
B, self.num_heads, C // self.num_heads,
self.kernel_size * self.kernel_size, h * w).permute(0, 1, 4, 3, 2) # B,H,N,kxk,C/H
attn = self.pool(x.permute(0, 3, 1, 2)).permute(0, 2, 3, 1)
attn = self.attn(attn).reshape(
B, h * w, self.num_heads, self.kernel_size * self.kernel_size,
self.kernel_size * self.kernel_size).permute(0, 2, 1, 3, 4) # B,H,N,kxk,kxk
attn = attn * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).permute(0, 1, 4, 3, 2).reshape(B, C * self.kernel_size * self.kernel_size, h * w)
x = F.fold(x, output_size=(H, W), kernel_size=self.kernel_size, padding=self.padding, stride=self.stride)
x = self.proj(x.permute(0, 2, 3, 1))
x = self.proj_drop(x)
return x
class Outlooker(nn.Module):
"""Outlooker block that combines outlook attention with MLP."""
def __init__(
self,
dim: int,
kernel_size: int,
padding: int,
stride: int = 1,
num_heads: int = 1,
mlp_ratio: float = 3.,
attn_drop: float = 0.,
drop_path: float = 0.,
act_layer: Callable = nn.GELU,
norm_layer: Callable = nn.LayerNorm,
qkv_bias: bool = False,
):
"""Initialize Outlooker block.
Args:
dim: Input feature dimension.
kernel_size: Kernel size for outlook attention.
padding: Padding for outlook attention.
stride: Stride for outlook attention.
num_heads: Number of attention heads.
mlp_ratio: Ratio for MLP hidden dimension.
attn_drop: Attention dropout rate.
drop_path: Stochastic depth drop rate.
act_layer: Activation layer type.
norm_layer: Normalization layer type.
qkv_bias: Whether to use bias in linear layers.
"""
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = OutlookAttention(
dim,
num_heads,
kernel_size=kernel_size,
padding=padding,
stride=stride,
qkv_bias=qkv_bias,
attn_drop=attn_drop,
)
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
self.mlp = Mlp(
in_features=dim,
hidden_features=int(dim * mlp_ratio),
act_layer=act_layer,
)
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Forward pass.
Args:
x: Input tensor.
Returns:
Output tensor.
"""
x = x + self.drop_path1(self.attn(self.norm1(x)))
x = x + self.drop_path2(self.mlp(self.norm2(x)))
return x
class Attention(nn.Module):
"""Multi-head self-attention module."""
fused_attn: torch.jit.Final[bool]
def __init__(
self,
dim: int,
num_heads: int = 8,
qkv_bias: bool = False,
attn_drop: float = 0.,
proj_drop: float = 0.,
):
"""Initialize Attention module.
Args:
dim: Input feature dimension.
num_heads: Number of attention heads.
qkv_bias: Whether to use bias in QKV projection.
attn_drop: Attention dropout rate.
proj_drop: Projection dropout rate.
"""
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim ** -0.5
self.fused_attn = use_fused_attn()
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Forward pass.
Args:
x: Input tensor of shape (B, H, W, C).
Returns:
Output tensor of shape (B, H, W, C).
"""
B, H, W, C = x.shape
qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0)
if self.fused_attn:
x = F.scaled_dot_product_attention(
q, k, v,
dropout_p=self.attn_drop.p if self.training else 0.,
)
else:
q = q * self.scale
attn = q @ k.transpose(-2, -1)
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = attn @ v
x = x.transpose(1, 2).reshape(B, H, W, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Transformer(nn.Module):
"""Transformer block with multi-head self-attention and MLP."""
def __init__(
self,
dim: int,
num_heads: int,
mlp_ratio: float = 4.,
qkv_bias: bool = False,
attn_drop: float = 0.,
drop_path: float = 0.,
act_layer: Callable = nn.GELU,
norm_layer: Callable = nn.LayerNorm,
):
"""Initialize Transformer block.
Args:
dim: Input feature dimension.
num_heads: Number of attention heads.
mlp_ratio: Ratio for MLP hidden dimension.
qkv_bias: Whether to use bias in QKV projection.
attn_drop: Attention dropout rate.
drop_path: Stochastic depth drop rate.
act_layer: Activation layer type.
norm_layer: Normalization layer type.
"""
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop)
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer)
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Forward pass.
Args:
x: Input tensor.
Returns:
Output tensor.
"""
x = x + self.drop_path1(self.attn(self.norm1(x)))
x = x + self.drop_path2(self.mlp(self.norm2(x)))
return x
class ClassAttention(nn.Module):
"""Class attention mechanism for class token interaction."""
def __init__(
self,
dim: int,
num_heads: int = 8,
head_dim: Optional[int] = None,
qkv_bias: bool = False,
attn_drop: float = 0.,
proj_drop: float = 0.,
):
"""Initialize ClassAttention.
Args:
dim: Input feature dimension.
num_heads: Number of attention heads.
head_dim: Dimension per head. If None, computed as dim // num_heads.
qkv_bias: Whether to use bias in QKV projection.
attn_drop: Attention dropout rate.
proj_drop: Projection dropout rate.
"""
super().__init__()
self.num_heads = num_heads
if head_dim is not None:
self.head_dim = head_dim
else:
head_dim = dim // num_heads
self.head_dim = head_dim
self.scale = head_dim ** -0.5
self.kv = nn.Linear(dim, self.head_dim * self.num_heads * 2, bias=qkv_bias)
self.q = nn.Linear(dim, self.head_dim * self.num_heads, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(self.head_dim * self.num_heads, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Forward pass.
Args:
x: Input tensor of shape (B, N, C) where first token is class token.
Returns:
Class token output of shape (B, 1, C).
"""
B, N, C = x.shape
kv = self.kv(x).reshape(B, N, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
k, v = kv.unbind(0)
q = self.q(x[:, :1, :]).reshape(B, self.num_heads, 1, self.head_dim) * self.scale
attn = q @ k.transpose(-2, -1)
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
cls_embed = (attn @ v).transpose(1, 2).reshape(B, 1, self.head_dim * self.num_heads)
cls_embed = self.proj(cls_embed)
cls_embed = self.proj_drop(cls_embed)
return cls_embed
class ClassBlock(nn.Module):
"""Class block that combines class attention with MLP."""
def __init__(
self,
dim: int,
num_heads: int,
head_dim: Optional[int] = None,
mlp_ratio: float = 4.,
qkv_bias: bool = False,
drop: float = 0.,
attn_drop: float = 0.,
drop_path: float = 0.,
act_layer: Callable = nn.GELU,
norm_layer: Callable = nn.LayerNorm,
):
"""Initialize ClassBlock.
Args:
dim: Input feature dimension.
num_heads: Number of attention heads.
head_dim: Dimension per head. If None, computed as dim // num_heads.
mlp_ratio: Ratio for MLP hidden dimension.
qkv_bias: Whether to use bias in QKV projection.
drop: Dropout rate.
attn_drop: Attention dropout rate.
drop_path: Stochastic depth drop rate.
act_layer: Activation layer type.
norm_layer: Normalization layer type.
"""
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = ClassAttention(
dim,
num_heads=num_heads,
head_dim=head_dim,
qkv_bias=qkv_bias,
attn_drop=attn_drop,
proj_drop=drop,
)
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
self.mlp = Mlp(
in_features=dim,
hidden_features=int(dim * mlp_ratio),
act_layer=act_layer,
drop=drop,
)
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Forward pass.
Args:
x: Input tensor of shape (B, N, C) where first token is class token.
Returns:
Output tensor with updated class token.
"""
cls_embed = x[:, :1]
cls_embed = cls_embed + self.drop_path1(self.attn(self.norm1(x)))
cls_embed = cls_embed + self.drop_path2(self.mlp(self.norm2(cls_embed)))
return torch.cat([cls_embed, x[:, 1:]], dim=1)
def get_block(block_type: str, **kargs: Any) -> nn.Module:
"""Get block based on type.
Args:
block_type: Type of block ('ca' for ClassBlock).
**kargs: Additional keyword arguments for block.
Returns:
The requested block module.
"""
if block_type == 'ca':
return ClassBlock(**kargs)
def rand_bbox(size: Tuple[int, ...], lam: float, scale: int = 1) -> Tuple[int, int, int, int]:
"""Get random bounding box for token labeling.
Reference: https://github.com/zihangJiang/TokenLabeling
Args:
size: Input tensor size tuple.
lam: Lambda parameter for cutmix.
scale: Scaling factor.
Returns:
Bounding box coordinates (bbx1, bby1, bbx2, bby2).
"""
W = size[1] // scale
H = size[2] // scale
W_t = torch.tensor(W, dtype=torch.float32)
H_t = torch.tensor(H, dtype=torch.float32)
cut_rat = torch.sqrt(1. - lam)
cut_w = (W_t * cut_rat).int()
cut_h = (H_t * cut_rat).int()
# uniform
cx = torch.randint(0, W, (1,))
cy = torch.randint(0, H, (1,))
bbx1 = torch.clamp(cx - cut_w // 2, 0, W)
bby1 = torch.clamp(cy - cut_h // 2, 0, H)
bbx2 = torch.clamp(cx + cut_w // 2, 0, W)
bby2 = torch.clamp(cy + cut_h // 2, 0, H)
return bbx1.item(), bby1.item(), bbx2.item(), bby2.item()
class PatchEmbed(nn.Module):
"""Image to patch embedding with multi-layer convolution."""
def __init__(
self,
img_size: int = 224,
stem_conv: bool = False,
stem_stride: int = 1,
patch_size: int = 8,
in_chans: int = 3,
hidden_dim: int = 64,
embed_dim: int = 384,
):
"""Initialize PatchEmbed.
Different from ViT which uses 1 conv layer, VOLO uses multiple conv layers for patch embedding.
Args:
img_size: Input image size.
stem_conv: Whether to use stem convolution layers.
stem_stride: Stride for stem convolution.
patch_size: Patch size (must be 4, 8, or 16).
in_chans: Number of input channels.
hidden_dim: Hidden dimension for stem convolution.
embed_dim: Output embedding dimension.
"""
super().__init__()
assert patch_size in [4, 8, 16]
if stem_conv:
self.conv = nn.Sequential(
nn.Conv2d(in_chans, hidden_dim, kernel_size=7, stride=stem_stride, padding=3, bias=False), # 112x112
nn.BatchNorm2d(hidden_dim),
nn.ReLU(inplace=True),
nn.Conv2d(hidden_dim, hidden_dim, kernel_size=3, stride=1, padding=1, bias=False), # 112x112
nn.BatchNorm2d(hidden_dim),
nn.ReLU(inplace=True),
nn.Conv2d(hidden_dim, hidden_dim, kernel_size=3, stride=1, padding=1, bias=False), # 112x112
nn.BatchNorm2d(hidden_dim),
nn.ReLU(inplace=True),
)
else:
self.conv = None
self.proj = nn.Conv2d(
hidden_dim, embed_dim, kernel_size=patch_size // stem_stride, stride=patch_size // stem_stride)
self.num_patches = (img_size // patch_size) * (img_size // patch_size)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Forward pass.
Args:
x: Input tensor of shape (B, C, H, W).
Returns:
Output tensor of shape (B, embed_dim, H', W').
"""
if self.conv is not None:
x = self.conv(x)
x = self.proj(x) # B, C, H, W
return x
class Downsample(nn.Module):
"""Downsampling module between stages."""
def __init__(self, in_embed_dim: int, out_embed_dim: int, patch_size: int = 2):
"""Initialize Downsample.
Args:
in_embed_dim: Input embedding dimension.
out_embed_dim: Output embedding dimension.
patch_size: Patch size for downsampling.
"""
super().__init__()
self.proj = nn.Conv2d(in_embed_dim, out_embed_dim, kernel_size=patch_size, stride=patch_size)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Forward pass.
Args:
x: Input tensor of shape (B, H, W, C).
Returns:
Output tensor of shape (B, H', W', C').
"""
x = x.permute(0, 3, 1, 2)
x = self.proj(x) # B, C, H, W
x = x.permute(0, 2, 3, 1)
return x
def outlooker_blocks(
block_fn: Callable,
index: int,
dim: int,
layers: List[int],
num_heads: int = 1,
kernel_size: int = 3,
padding: int = 1,
stride: int = 2,
mlp_ratio: float = 3.,
qkv_bias: bool = False,
attn_drop: float = 0,
drop_path_rate: float = 0.,
**kwargs: Any,
) -> nn.Sequential:
"""Generate outlooker layers for stage 1.
Args:
block_fn: Block function to use (typically Outlooker).
index: Index of current stage.
dim: Feature dimension.
layers: List of layer counts for each stage.
num_heads: Number of attention heads.
kernel_size: Kernel size for outlook attention.
padding: Padding for outlook attention.
stride: Stride for outlook attention.
mlp_ratio: Ratio for MLP hidden dimension.
qkv_bias: Whether to use bias in QKV projection.
attn_drop: Attention dropout rate.
drop_path_rate: Stochastic depth drop rate.
**kwargs: Additional keyword arguments.
Returns:
Sequential module containing outlooker blocks.
"""
blocks = []
for block_idx in range(layers[index]):
block_dpr = drop_path_rate * (block_idx + sum(layers[:index])) / (sum(layers) - 1)
blocks.append(block_fn(
dim,
kernel_size=kernel_size,
padding=padding,
stride=stride,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
attn_drop=attn_drop,
drop_path=block_dpr,
))
blocks = nn.Sequential(*blocks)
return blocks
def transformer_blocks(
block_fn: Callable,
index: int,
dim: int,
layers: List[int],
num_heads: int,
mlp_ratio: float = 3.,
qkv_bias: bool = False,
attn_drop: float = 0,
drop_path_rate: float = 0.,
**kwargs: Any,
) -> nn.Sequential:
"""Generate transformer layers for stage 2.
Args:
block_fn: Block function to use (typically Transformer).
index: Index of current stage.
dim: Feature dimension.
layers: List of layer counts for each stage.
num_heads: Number of attention heads.
mlp_ratio: Ratio for MLP hidden dimension.
qkv_bias: Whether to use bias in QKV projection.
attn_drop: Attention dropout rate.
drop_path_rate: Stochastic depth drop rate.
**kwargs: Additional keyword arguments.
Returns:
Sequential module containing transformer blocks.
"""
blocks = []
for block_idx in range(layers[index]):
block_dpr = drop_path_rate * (block_idx + sum(layers[:index])) / (sum(layers) - 1)
blocks.append(block_fn(
dim,
num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
attn_drop=attn_drop,
drop_path=block_dpr,
))
blocks = nn.Sequential(*blocks)
return blocks
class VOLO(nn.Module):
"""Vision Outlooker (VOLO) model."""
def __init__(
self,
layers: List[int],
img_size: int = 224,
in_chans: int = 3,
num_classes: int = 1000,
global_pool: str = 'token',
patch_size: int = 8,
stem_hidden_dim: int = 64,
embed_dims: Optional[List[int]] = None,
num_heads: Optional[List[int]] = None,
downsamples: Tuple[bool, ...] = (True, False, False, False),
outlook_attention: Tuple[bool, ...] = (True, False, False, False),
mlp_ratio: float = 3.0,
qkv_bias: bool = False,
drop_rate: float = 0.,
pos_drop_rate: float = 0.,
attn_drop_rate: float = 0.,
drop_path_rate: float = 0.,
norm_layer: Callable = nn.LayerNorm,
post_layers: Optional[Tuple[str, ...]] = ('ca', 'ca'),
use_aux_head: bool = True,
use_mix_token: bool = False,
pooling_scale: int = 2,
):
"""Initialize VOLO model.
Args:
layers: Number of blocks in each stage.
img_size: Input image size.
in_chans: Number of input channels.
num_classes: Number of classes for classification.
global_pool: Global pooling type ('token', 'avg', or '').
patch_size: Patch size for patch embedding.
stem_hidden_dim: Hidden dimension for stem convolution.
embed_dims: List of embedding dimensions for each stage.
num_heads: List of number of attention heads for each stage.
downsamples: Whether to downsample between stages.
outlook_attention: Whether to use outlook attention in each stage.
mlp_ratio: Ratio for MLP hidden dimension.
qkv_bias: Whether to use bias in QKV projection.
drop_rate: Dropout rate.
pos_drop_rate: Position embedding dropout rate.
attn_drop_rate: Attention dropout rate.
drop_path_rate: Stochastic depth drop rate.
norm_layer: Normalization layer type.
post_layers: Post-processing layer types.
use_aux_head: Whether to use auxiliary head.
use_mix_token: Whether to use token mixing for training.
pooling_scale: Pooling scale factor.
"""
super().__init__()
num_layers = len(layers)
mlp_ratio = to_ntuple(num_layers)(mlp_ratio)
img_size = to_2tuple(img_size)
self.num_classes = num_classes
self.global_pool = global_pool
self.mix_token = use_mix_token
self.pooling_scale = pooling_scale
self.num_features = self.head_hidden_size = embed_dims[-1]
if use_mix_token: # enable token mixing, see token labeling for details.
self.beta = 1.0
assert global_pool == 'token', "return all tokens if mix_token is enabled"
self.grad_checkpointing = False
self.patch_embed = PatchEmbed(
stem_conv=True,
stem_stride=2,
patch_size=patch_size,
in_chans=in_chans,
hidden_dim=stem_hidden_dim,
embed_dim=embed_dims[0],
)
r = patch_size
# initial positional encoding, we add positional encoding after outlooker blocks
patch_grid = (img_size[0] // patch_size // pooling_scale, img_size[1] // patch_size // pooling_scale)
self.pos_embed = nn.Parameter(torch.zeros(1, patch_grid[0], patch_grid[1], embed_dims[-1]))
self.pos_drop = nn.Dropout(p=pos_drop_rate)
# set the main block in network
self.stage_ends = []
self.feature_info = []
network = []
block_idx = 0
for i in range(len(layers)):
if outlook_attention[i]:
# stage 1
stage = outlooker_blocks(
Outlooker,
i,
embed_dims[i],
layers,
num_heads[i],
mlp_ratio=mlp_ratio[i],
qkv_bias=qkv_bias,
attn_drop=attn_drop_rate,
norm_layer=norm_layer,
)
else:
# stage 2
stage = transformer_blocks(
Transformer,
i,
embed_dims[i],
layers,
num_heads[i],
mlp_ratio=mlp_ratio[i],
qkv_bias=qkv_bias,
drop_path_rate=drop_path_rate,
attn_drop=attn_drop_rate,
norm_layer=norm_layer,
)
network.append(stage)
self.stage_ends.append(block_idx)
self.feature_info.append(dict(num_chs=embed_dims[i], reduction=r, module=f'network.{block_idx}'))
block_idx += 1
if downsamples[i]:
# downsampling between two stages
network.append(Downsample(embed_dims[i], embed_dims[i + 1], 2))
r *= 2
block_idx += 1
self.network = nn.ModuleList(network)
# set post block, for example, class attention layers
self.post_network = None
if post_layers is not None:
self.post_network = nn.ModuleList([
get_block(
post_layers[i],
dim=embed_dims[-1],
num_heads=num_heads[-1],
mlp_ratio=mlp_ratio[-1],
qkv_bias=qkv_bias,
attn_drop=attn_drop_rate,
drop_path=0.,
norm_layer=norm_layer)
for i in range(len(post_layers))
])
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dims[-1]))
trunc_normal_(self.cls_token, std=.02)
# set output type
if use_aux_head:
self.aux_head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
else:
self.aux_head = None
self.norm = norm_layer(self.num_features)
# Classifier head
self.head_drop = nn.Dropout(drop_rate)
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
trunc_normal_(self.pos_embed, std=.02)
self.apply(self._init_weights)
def _init_weights(self, m: nn.Module) -> None:
"""Initialize weights for modules.
Args:
m: Module to initialize.
"""
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
@torch.jit.ignore
def no_weight_decay(self) -> set:
"""Get set of parameters that should not have weight decay.
Returns:
Set of parameter names.
"""
return {'pos_embed', 'cls_token'}
@torch.jit.ignore
def group_matcher(self, coarse: bool = False) -> Dict[str, Any]:
"""Get parameter grouping for optimizer.
Args:
coarse: Whether to use coarse grouping.
Returns:
Parameter grouping dictionary.
"""
return dict(
stem=r'^cls_token|pos_embed|patch_embed', # stem and embed
blocks=[
(r'^network\.(\d+)\.(\d+)', None),
(r'^network\.(\d+)', (0,)),
],
blocks2=[
(r'^cls_token', (0,)),
(r'^post_network\.(\d+)', None),
(r'^norm', (99999,))
],
)
@torch.jit.ignore
def set_grad_checkpointing(self, enable: bool = True) -> None:
"""Set gradient checkpointing.
Args:
enable: Whether to enable gradient checkpointing.
"""
self.grad_checkpointing = enable
@torch.jit.ignore
def get_classifier(self) -> nn.Module:
"""Get classifier module.
Returns:
The classifier head module.
"""
return self.head
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None) -> None:
"""Reset classifier head.
Args:
num_classes: Number of classes for new classifier.
global_pool: Global pooling type.
"""
self.num_classes = num_classes
if global_pool is not None:
self.global_pool = global_pool
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
if self.aux_head is not None:
self.aux_head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
def forward_tokens(self, x: torch.Tensor) -> torch.Tensor:
"""Forward pass through token processing stages.
Args:
x: Input tensor of shape (B, H, W, C).
Returns:
Token tensor of shape (B, N, C).
"""
for idx, block in enumerate(self.network):
if idx == 2:
# add positional encoding after outlooker blocks
x = x + self.pos_embed
x = self.pos_drop(x)
if self.grad_checkpointing and not torch.jit.is_scripting():
x = checkpoint(block, x)
else:
x = block(x)
B, H, W, C = x.shape
x = x.reshape(B, -1, C)
return x
def forward_cls(self, x: torch.Tensor) -> torch.Tensor:
"""Forward pass through class attention blocks.
Args:
x: Input token tensor of shape (B, N, C).
Returns:
Output tensor with class token of shape (B, N+1, C).
"""
B, N, C = x.shape
cls_tokens = self.cls_token.expand(B, -1, -1)
x = torch.cat([cls_tokens, x], dim=1)
for block in self.post_network:
if self.grad_checkpointing and not torch.jit.is_scripting():
x = checkpoint(block, x)
else:
x = block(x)
return x
def forward_train(self, x: torch.Tensor) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor, Tuple[int, int, int, int]]]:
"""Forward pass for training with mix token support.
Args:
x: Input tensor of shape (B, C, H, W).
Returns:
If training with mix_token: tuple of (class_token, aux_tokens, bbox).
Otherwise: class_token tensor.
"""
""" A separate forward fn for training with mix_token (if a train script supports).
Combining multiple modes in as single forward with different return types is torchscript hell.
"""
x = self.patch_embed(x)
x = x.permute(0, 2, 3, 1) # B,C,H,W-> B,H,W,C
# mix token, see token labeling for details.
if self.mix_token and self.training:
lam = torch.distributions.Beta(self.beta, self.beta).sample()
patch_h, patch_w = x.shape[1] // self.pooling_scale, x.shape[2] // self.pooling_scale
bbx1, bby1, bbx2, bby2 = rand_bbox(x.size(), lam, scale=self.pooling_scale)
temp_x = x.clone()
sbbx1, sbby1 = self.pooling_scale * bbx1, self.pooling_scale * bby1
sbbx2, sbby2 = self.pooling_scale * bbx2, self.pooling_scale * bby2
temp_x[:, sbbx1:sbbx2, sbby1:sbby2, :] = x.flip(0)[:, sbbx1:sbbx2, sbby1:sbby2, :]
x = temp_x
else:
bbx1, bby1, bbx2, bby2 = 0, 0, 0, 0
# step2: tokens learning in the two stages
x = self.forward_tokens(x)
# step3: post network, apply class attention or not
if self.post_network is not None:
x = self.forward_cls(x)
x = self.norm(x)
if self.global_pool == 'avg':
x_cls = x.mean(dim=1)
elif self.global_pool == 'token':
x_cls = x[:, 0]
else:
x_cls = x
if self.aux_head is None:
return x_cls
x_aux = self.aux_head(x[:, 1:]) # generate classes in all feature tokens, see token labeling
if not self.training:
return x_cls + 0.5 * x_aux.max(1)[0]
if self.mix_token and self.training: # reverse "mix token", see token labeling for details.
x_aux = x_aux.reshape(x_aux.shape[0], patch_h, patch_w, x_aux.shape[-1])
temp_x = x_aux.clone()
temp_x[:, bbx1:bbx2, bby1:bby2, :] = x_aux.flip(0)[:, bbx1:bbx2, bby1:bby2, :]
x_aux = temp_x
x_aux = x_aux.reshape(x_aux.shape[0], patch_h * patch_w, x_aux.shape[-1])
# return these: 1. class token, 2. classes from all feature tokens, 3. bounding box
return x_cls, x_aux, (bbx1, bby1, bbx2, bby2)
def forward_intermediates(
self,
x: torch.Tensor,
indices: Optional[Union[int, List[int]]] = None,
norm: bool = False,
stop_early: bool = False,
output_fmt: str = 'NCHW',
intermediates_only: bool = False,
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]:
""" Forward features that returns intermediates.
Args:
x: Input image tensor
indices: Take last n blocks if int, all if None, select matching indices if sequence
norm: Apply norm layer to all intermediates
stop_early: Stop iterating over blocks when last desired intermediate hit
output_fmt: Shape of intermediate feature outputs
intermediates_only: Only return intermediate features
Returns:
"""
assert output_fmt in ('NCHW',), 'Output format must be NCHW.'
intermediates = []
take_indices, max_index = feature_take_indices(len(self.stage_ends), indices)
take_indices = [self.stage_ends[i] for i in take_indices]
max_index = self.stage_ends[max_index]
# forward pass
B, _, height, width = x.shape
x = self.patch_embed(x).permute(0, 2, 3, 1) # B,C,H,W-> B,H,W,C
# step2: tokens learning in the two stages
if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript
network = self.network
else:
network = self.network[:max_index + 1]
for idx, block in enumerate(network):
if idx == 2:
# add positional encoding after outlooker blocks
x = x + self.pos_embed
x = self.pos_drop(x)
if self.grad_checkpointing and not torch.jit.is_scripting():
x = checkpoint(block, x)
else:
x = block(x)
if idx in take_indices:
if norm and idx >= 2:
x_inter = self.norm(x)
else:
x_inter = x
intermediates.append(x_inter.permute(0, 3, 1, 2))
if intermediates_only:
return intermediates
# NOTE not supporting return of class tokens
# step3: post network, apply class attention or not
B, H, W, C = x.shape
x = x.reshape(B, -1, C)
if self.post_network is not None:
x = self.forward_cls(x)
x = self.norm(x)
return x, intermediates
def prune_intermediate_layers(
self,
indices: Union[int, List[int]] = 1,
prune_norm: bool = False,
prune_head: bool = True,
) -> List[int]:
"""Prune layers not required for specified intermediates.
Args:
indices: Indices of intermediate layers to keep.
prune_norm: Whether to prune normalization layer.
prune_head: Whether to prune classification head.
Returns:
List of kept intermediate indices.
"""
""" Prune layers not required for specified intermediates.
"""
take_indices, max_index = feature_take_indices(len(self.stage_ends), indices)
max_index = self.stage_ends[max_index]
self.network = self.network[:max_index + 1] # truncate blocks
if prune_norm:
self.norm = nn.Identity()
if prune_head:
self.post_network = nn.ModuleList() # prune token blocks with head
self.reset_classifier(0, '')
return take_indices
def forward_features(self, x: torch.Tensor) -> torch.Tensor:
"""Forward pass through feature extraction.
Args:
x: Input tensor of shape (B, C, H, W).
Returns:
Feature tensor.
"""
x = self.patch_embed(x).permute(0, 2, 3, 1) # B,C,H,W-> B,H,W,C
# step2: tokens learning in the two stages
x = self.forward_tokens(x)
# step3: post network, apply class attention or not
if self.post_network is not None:
x = self.forward_cls(x)
x = self.norm(x)
return x
def forward_head(self, x: torch.Tensor, pre_logits: bool = False) -> torch.Tensor:
"""Forward pass through classification head.
Args:
x: Input feature tensor.
pre_logits: Whether to return pre-logits features.
Returns:
Classification logits or pre-logits features.
"""
if self.global_pool == 'avg':
out = x.mean(dim=1)
elif self.global_pool == 'token':
out = x[:, 0]
else:
out = x
x = self.head_drop(x)
if pre_logits:
return out
out = self.head(out)
if self.aux_head is not None:
# generate classes in all feature tokens, see token labeling
aux = self.aux_head(x[:, 1:])
out = out + 0.5 * aux.max(1)[0]
return out
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Forward pass (simplified, without mix token training).
Args:
x: Input tensor of shape (B, C, H, W).
Returns:
Classification logits.
"""
""" simplified forward (without mix token training) """
x = self.forward_features(x)
x = self.forward_head(x)
return x
def _create_volo(variant: str, pretrained: bool = False, **kwargs: Any) -> VOLO:
"""Create VOLO model.
Args:
variant: Model variant name.
pretrained: Whether to load pretrained weights.
**kwargs: Additional model arguments.
Returns:
VOLO model instance.
"""
out_indices = kwargs.pop('out_indices', 3)
return build_model_with_cfg(
VOLO,
variant,
pretrained,
feature_cfg=dict(out_indices=out_indices, feature_cls='getter'),
**kwargs,
)
def _cfg(url: str = '', **kwargs: Any) -> Dict[str, Any]:
"""Create model configuration.
Args:
url: URL for pretrained weights.
**kwargs: Additional configuration options.
Returns:
Model configuration dictionary.
"""
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
'crop_pct': .96, 'interpolation': 'bicubic', 'fixed_input_size': True,
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'patch_embed.conv.0', 'classifier': ('head', 'aux_head'),
**kwargs
}
default_cfgs = generate_default_cfgs({
'volo_d1_224.sail_in1k': _cfg(
hf_hub_id='timm/',
url='https://github.com/sail-sg/volo/releases/download/volo_1/d1_224_84.2.pth.tar',
crop_pct=0.96),
'volo_d1_384.sail_in1k': _cfg(
hf_hub_id='timm/',
url='https://github.com/sail-sg/volo/releases/download/volo_1/d1_384_85.2.pth.tar',
crop_pct=1.0, input_size=(3, 384, 384)),
'volo_d2_224.sail_in1k': _cfg(
hf_hub_id='timm/',
url='https://github.com/sail-sg/volo/releases/download/volo_1/d2_224_85.2.pth.tar',
crop_pct=0.96),
'volo_d2_384.sail_in1k': _cfg(
hf_hub_id='timm/',
url='https://github.com/sail-sg/volo/releases/download/volo_1/d2_384_86.0.pth.tar',
crop_pct=1.0, input_size=(3, 384, 384)),
'volo_d3_224.sail_in1k': _cfg(
hf_hub_id='timm/',
url='https://github.com/sail-sg/volo/releases/download/volo_1/d3_224_85.4.pth.tar',
crop_pct=0.96),
'volo_d3_448.sail_in1k': _cfg(
hf_hub_id='timm/',
url='https://github.com/sail-sg/volo/releases/download/volo_1/d3_448_86.3.pth.tar',
crop_pct=1.0, input_size=(3, 448, 448)),
'volo_d4_224.sail_in1k': _cfg(
hf_hub_id='timm/',
url='https://github.com/sail-sg/volo/releases/download/volo_1/d4_224_85.7.pth.tar',
crop_pct=0.96),
'volo_d4_448.sail_in1k': _cfg(
hf_hub_id='timm/',
url='https://github.com/sail-sg/volo/releases/download/volo_1/d4_448_86.79.pth.tar',
crop_pct=1.15, input_size=(3, 448, 448)),
'volo_d5_224.sail_in1k': _cfg(
hf_hub_id='timm/',
url='https://github.com/sail-sg/volo/releases/download/volo_1/d5_224_86.10.pth.tar',
crop_pct=0.96),
'volo_d5_448.sail_in1k': _cfg(
hf_hub_id='timm/',
url='https://github.com/sail-sg/volo/releases/download/volo_1/d5_448_87.0.pth.tar',
crop_pct=1.15, input_size=(3, 448, 448)),
'volo_d5_512.sail_in1k': _cfg(
hf_hub_id='timm/',
url='https://github.com/sail-sg/volo/releases/download/volo_1/d5_512_87.07.pth.tar',
crop_pct=1.15, input_size=(3, 512, 512)),
})
@register_model
def volo_d1_224(pretrained: bool = False, **kwargs: Any) -> VOLO:
"""VOLO-D1 model, Params: 27M."""
model_args = dict(layers=(4, 4, 8, 2), embed_dims=(192, 384, 384, 384), num_heads=(6, 12, 12, 12), **kwargs)
model = _create_volo('volo_d1_224', pretrained=pretrained, **model_args)
return model
@register_model
def volo_d1_384(pretrained: bool = False, **kwargs: Any) -> VOLO:
"""VOLO-D1 model, Params: 27M."""
model_args = dict(layers=(4, 4, 8, 2), embed_dims=(192, 384, 384, 384), num_heads=(6, 12, 12, 12), **kwargs)
model = _create_volo('volo_d1_384', pretrained=pretrained, **model_args)
return model
@register_model
def volo_d2_224(pretrained: bool = False, **kwargs: Any) -> VOLO:
"""VOLO-D2 model, Params: 59M."""
model_args = dict(layers=(6, 4, 10, 4), embed_dims=(256, 512, 512, 512), num_heads=(8, 16, 16, 16), **kwargs)
model = _create_volo('volo_d2_224', pretrained=pretrained, **model_args)
return model
@register_model
def volo_d2_384(pretrained: bool = False, **kwargs: Any) -> VOLO:
"""VOLO-D2 model, Params: 59M."""
model_args = dict(layers=(6, 4, 10, 4), embed_dims=(256, 512, 512, 512), num_heads=(8, 16, 16, 16), **kwargs)
model = _create_volo('volo_d2_384', pretrained=pretrained, **model_args)
return model
@register_model
def volo_d3_224(pretrained: bool = False, **kwargs: Any) -> VOLO:
"""VOLO-D3 model, Params: 86M."""
model_args = dict(layers=(8, 8, 16, 4), embed_dims=(256, 512, 512, 512), num_heads=(8, 16, 16, 16), **kwargs)
model = _create_volo('volo_d3_224', pretrained=pretrained, **model_args)
return model
@register_model
def volo_d3_448(pretrained: bool = False, **kwargs: Any) -> VOLO:
"""VOLO-D3 model, Params: 86M."""
model_args = dict(layers=(8, 8, 16, 4), embed_dims=(256, 512, 512, 512), num_heads=(8, 16, 16, 16), **kwargs)
model = _create_volo('volo_d3_448', pretrained=pretrained, **model_args)
return model
@register_model
def volo_d4_224(pretrained: bool = False, **kwargs: Any) -> VOLO:
"""VOLO-D4 model, Params: 193M."""
model_args = dict(layers=(8, 8, 16, 4), embed_dims=(384, 768, 768, 768), num_heads=(12, 16, 16, 16), **kwargs)
model = _create_volo('volo_d4_224', pretrained=pretrained, **model_args)
return model
@register_model
def volo_d4_448(pretrained: bool = False, **kwargs: Any) -> VOLO:
"""VOLO-D4 model, Params: 193M."""
model_args = dict(layers=(8, 8, 16, 4), embed_dims=(384, 768, 768, 768), num_heads=(12, 16, 16, 16), **kwargs)
model = _create_volo('volo_d4_448', pretrained=pretrained, **model_args)
return model
@register_model
def volo_d5_224(pretrained: bool = False, **kwargs: Any) -> VOLO:
"""VOLO-D5 model, Params: 296M.
stem_hidden_dim=128, the dim in patch embedding is 128 for VOLO-D5.
"""
model_args = dict(
layers=(12, 12, 20, 4), embed_dims=(384, 768, 768, 768), num_heads=(12, 16, 16, 16),
mlp_ratio=4, stem_hidden_dim=128, **kwargs)
model = _create_volo('volo_d5_224', pretrained=pretrained, **model_args)
return model
@register_model
def volo_d5_448(pretrained: bool = False, **kwargs: Any) -> VOLO:
"""VOLO-D5 model, Params: 296M.
stem_hidden_dim=128, the dim in patch embedding is 128 for VOLO-D5.
"""
model_args = dict(
layers=(12, 12, 20, 4), embed_dims=(384, 768, 768, 768), num_heads=(12, 16, 16, 16),
mlp_ratio=4, stem_hidden_dim=128, **kwargs)
model = _create_volo('volo_d5_448', pretrained=pretrained, **model_args)
return model
@register_model
def volo_d5_512(pretrained: bool = False, **kwargs: Any) -> VOLO:
"""VOLO-D5 model, Params: 296M.
stem_hidden_dim=128, the dim in patch embedding is 128 for VOLO-D5.
"""
model_args = dict(
layers=(12, 12, 20, 4), embed_dims=(384, 768, 768, 768), num_heads=(12, 16, 16, 16),
mlp_ratio=4, stem_hidden_dim=128, **kwargs)
model = _create_volo('volo_d5_512', pretrained=pretrained, **model_args)
return model