timm/optim/adamw.py (315 lines of code) (raw):
""" AdamW Optimizer
Impl copied from PyTorch master
References for added functionality:
Cautious Optimizers: https://arxiv.org/abs/2411.16085
Why Gradients Rapidly Increase Near the End of Training: https://arxiv.org/abs/2506.02285
NOTE: This impl has been deprecated in favour of torch.optim.AdamW and remains as a reference
"""
import math
from typing import List, Optional, Tuple
import torch
from torch import Tensor
from torch.optim.optimizer import Optimizer
from ._types import ParamsT
class AdamWLegacy(Optimizer):
r"""Implements AdamW algorithm.
NOTE: This impl has been deprecated in favour of torch.optim.AdamW and remains as a reference
References:
- Adam: A Method for Stochastic Optimization: https://arxiv.org/abs/1412.6980
- Decoupled Weight Decay Regularization: https://arxiv.org/abs/1711.05101
- On the Convergence of Adam and Beyond: https://openreview.net/forum?id=ryQu7f-RZ
Args:
params: iterable of parameters to optimize or dicts defining parameter groups
lr: learning rate
betas: coefficients used for computing running averages of gradient and its square
eps: term added to the denominator to improve numerical stability
weight_decay: weight decay coefficient
amsgrad: whether to use the AMSGrad variant of this algorithm
from the paper `On the Convergence of Adam and Beyond`
caution: apply caution when using AdamW
corrected_weight_decay: apply corrected weight decay (lr**2 / max_lr)
maximize: maximize the params based on the objective, instead of minimizing
foreach: whether foreach implementation of optimizer is used.
If unspecified by the user (so foreach is None), we will try to use
foreach over for-loop implementation on CUDA, since it is faster in general.
capturable: whether this instance is safe to capture in a CUDA graph.
Passing True can impair ungraphed performance, so if you don't intend to
graph capture this instance, leave it False
"""
def __init__(
self,
params: ParamsT,
lr: float = 1e-3,
betas: Tuple[float, float] = (0.9, 0.999),
eps: float = 1e-8,
weight_decay: float = 1e-2,
amsgrad: bool = False,
caution: bool = False,
corrected_weight_decay: bool = False,
maximize: bool = False,
foreach: Optional[bool] = None,
capturable: bool = False,
):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
defaults = dict(
lr=lr,
betas=betas,
eps=eps,
weight_decay=weight_decay,
amsgrad=amsgrad,
caution=caution,
corrected_weight_decay=corrected_weight_decay,
foreach=foreach,
maximize=maximize,
capturable=capturable,
)
super(AdamWLegacy, self).__init__(params, defaults)
def __setstate__(self, state):
super(AdamWLegacy, self).__setstate__(state)
state_values = list(self.state.values())
step_is_tensor = (len(state_values) != 0) and torch.is_tensor(state_values[0]['step'])
if not step_is_tensor:
for s in state_values:
s['step'] = torch.tensor(float(s['step']))
for group in self.param_groups:
group.setdefault('amsgrad', False)
group.setdefault('caution', False)
group.setdefault('corrected_weight_decay', False)
group.setdefault('foreach', None)
group.setdefault('maximize', False)
group.setdefault('capturable', False)
@torch.no_grad()
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
self._cuda_graph_capture_health_check()
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
for group in self.param_groups:
params_with_grad = []
grads = []
exp_avgs = []
exp_avg_sqs = []
max_exp_avg_sqs = []
state_steps = []
beta1, beta2 = group['betas']
amsgrad = group['amsgrad']
for p in group['params']:
if p.grad is None:
continue
params_with_grad.append(p)
if p.grad.is_sparse:
raise RuntimeError('AdamW does not support sparse gradients')
grads.append(p.grad)
state = self.state[p]
# State initialization
if len(state) == 0:
state['step'] = torch.tensor(0.)
# Exponential moving average of gradient values
state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format)
# Exponential moving average of squared gradient values
state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
if amsgrad:
# Maintains max of all exp. moving avg. of sq. grad. values
state['max_exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
exp_avgs.append(state['exp_avg'])
exp_avg_sqs.append(state['exp_avg_sq'])
if amsgrad:
max_exp_avg_sqs.append(state.get('max_exp_avg_sq', None))
state_steps.append(state['step'])
adamw(
params_with_grad,
grads,
exp_avgs,
exp_avg_sqs,
max_exp_avg_sqs,
state_steps,
foreach=group['foreach'],
amsgrad=amsgrad,
beta1=beta1,
beta2=beta2,
lr=group['lr'],
weight_decay=group['weight_decay'],
eps=group['eps'],
caution=group['caution'],
maximize=group['maximize'],
capturable=group['capturable'],
max_lr=self.defaults['lr'] if group['corrected_weight_decay'] else None,
)
return loss
def adamw(
params: List[Tensor],
grads: List[Tensor],
exp_avgs: List[Tensor],
exp_avg_sqs: List[Tensor],
max_exp_avg_sqs: List[Tensor],
state_steps: List[Tensor],
foreach: Optional[bool] = None,
capturable: bool = False,
*,
amsgrad: bool,
beta1: float,
beta2: float,
lr: float,
weight_decay: float,
eps: float,
caution: bool,
maximize: bool,
max_lr: Optional[float],
) -> None:
r"""Functional API that performs AdamW algorithm computation.
See AdamWLegacy class for details.
"""
if not all(isinstance(t, torch.Tensor) for t in state_steps):
raise RuntimeError(
'API has changed, `state_steps` argument must contain a list of' +
' singleton tensors')
if foreach is None:
try:
# cannot do foreach if this overload doesn't exist when caution enabled
foreach = not caution or 'Scalar' in torch.ops.aten._foreach_maximum_.overloads()
except:
foreach = False
if foreach and not torch.jit.is_scripting():
func = _multi_tensor_adamw
else:
func = _single_tensor_adamw
func(
params,
grads,
exp_avgs,
exp_avg_sqs,
max_exp_avg_sqs,
state_steps,
amsgrad=amsgrad,
beta1=beta1,
beta2=beta2,
lr=lr,
weight_decay=weight_decay,
eps=eps,
caution=caution,
maximize=maximize,
capturable=capturable,
max_lr=max_lr,
)
def _single_tensor_adamw(
params: List[Tensor],
grads: List[Tensor],
exp_avgs: List[Tensor],
exp_avg_sqs: List[Tensor],
max_exp_avg_sqs: List[Tensor],
state_steps: List[Tensor],
*,
amsgrad: bool,
beta1: float,
beta2: float,
lr: float,
weight_decay: float,
eps: float,
caution: bool,
maximize: bool,
capturable: bool,
max_lr: Optional[float],
):
for i, param in enumerate(params):
grad = grads[i] if not maximize else -grads[i]
exp_avg = exp_avgs[i]
exp_avg_sq = exp_avg_sqs[i]
step_t = state_steps[i]
# Update step.
step_t += 1
# Perform stepweight decay.
wd_scale = lr if max_lr is None else lr ** 2 / max_lr
param.mul_(1. - wd_scale * weight_decay)
# Decay the first and second moment running average coefficient.
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
if amsgrad:
max_exp_avg_sq = max_exp_avg_sqs[i]
# Maintains the maximum of all 2nd moment running avg. till now
torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq)
denom_base = max_exp_avg_sq
else:
denom_base = exp_avg_sq
if capturable:
step = step_t
# 1 - beta1 ** step can't be captured in a CUDA graph, even if step is a CUDA tensor
# (incurs "RuntimeError: CUDA error: operation not permitted when stream is capturing")
bias_correction1 = 1 - torch.pow(beta1, step)
bias_correction2 = 1 - torch.pow(beta2, step)
step_size = lr / bias_correction1
step_size_neg = step_size.neg()
bias_correction2_sqrt = bias_correction2.sqrt()
denom = (denom_base.sqrt() / (bias_correction2_sqrt * step_size_neg)).add_(eps / step_size_neg)
if caution:
# Apply caution as per 'Cautious Optimizers' - https://arxiv.org/abs/2411.16085
# FIXME not 100% sure if this remains capturable?
mask = (exp_avg * grad > 0).to(grad.dtype)
mask.div_(mask.mean().clamp_(min=1e-3))
exp_avg = exp_avg * mask
param.addcdiv_(exp_avg, denom)
else:
step = step_t.item()
bias_correction1 = 1 - beta1 ** step
bias_correction2 = 1 - beta2 ** step
step_size = lr / bias_correction1
bias_correction2_sqrt = math.sqrt(bias_correction2)
denom = (denom_base.sqrt() / bias_correction2_sqrt).add_(eps)
if caution:
# Apply caution as per 'Cautious Optimizers' - https://arxiv.org/abs/2411.16085
mask = (exp_avg * grad > 0).to(grad.dtype)
mask.div_(mask.mean().clamp_(min=1e-3))
exp_avg = exp_avg * mask
param.addcdiv_(exp_avg, denom, value=-step_size)
def _multi_tensor_adamw(
params: List[Tensor],
grads: List[Tensor],
exp_avgs: List[Tensor],
exp_avg_sqs: List[Tensor],
max_exp_avg_sqs: List[Tensor],
state_steps: List[Tensor],
*,
amsgrad: bool,
beta1: float,
beta2: float,
lr: float,
weight_decay: float,
eps: float,
caution: bool,
maximize: bool,
capturable: bool,
max_lr: Optional[float],
):
if len(params) == 0:
return
if capturable:
assert all(
p.is_cuda and step.is_cuda for p, step in zip(params, state_steps)
), "If capturable=True, params and state_steps must be CUDA tensors."
if maximize:
grads = torch._foreach_neg(tuple(grads)) # type: ignore[assignment]
grads = [torch.view_as_real(x) if torch.is_complex(x) else x for x in grads]
exp_avgs = [torch.view_as_real(x) if torch.is_complex(x) else x for x in exp_avgs]
exp_avg_sqs = [torch.view_as_real(x) if torch.is_complex(x) else x for x in exp_avg_sqs]
params = [torch.view_as_real(x) if torch.is_complex(x) else x for x in params]
# update steps
torch._foreach_add_(state_steps, 1)
# Perform stepweight decay
wd_scale = lr if max_lr is None else lr ** 2 / max_lr
torch._foreach_mul_(params, 1 - wd_scale * weight_decay)
# Decay the first and second moment running average coefficient
#torch._foreach_lerp_(exp_avgs, grads, 1 - beta1)
torch._foreach_mul_(exp_avgs, beta1)
torch._foreach_add_(exp_avgs, grads, alpha=1 - beta1)
torch._foreach_mul_(exp_avg_sqs, beta2)
torch._foreach_addcmul_(exp_avg_sqs, grads, grads, 1 - beta2)
if capturable:
# TODO: use foreach_pow if/when foreach_pow is added
bias_correction1 = [torch.pow(beta1, step) for step in state_steps]
bias_correction2 = [torch.pow(beta2, step) for step in state_steps]
# foreach_sub doesn't allow a scalar as the first arg
torch._foreach_sub_(bias_correction1, 1)
torch._foreach_sub_(bias_correction2, 1)
torch._foreach_neg_(bias_correction1)
torch._foreach_neg_(bias_correction2)
# foreach_div doesn't allow a scalar as the first arg
step_size = torch._foreach_div(bias_correction1, lr)
torch._foreach_reciprocal_(step_size)
torch._foreach_neg_(step_size)
bias_correction2_sqrt = torch._foreach_sqrt(bias_correction2)
if amsgrad:
# Maintains the maximum of all 2nd moment running avg. till now
max_exp_avg_sqs = [torch.view_as_real(x) if torch.is_complex(x) else x for x in max_exp_avg_sqs]
torch._foreach_maximum_(max_exp_avg_sqs, exp_avg_sqs)
denom_base = torch._foreach_sqrt(max_exp_avg_sqs)
else:
denom_base = torch._foreach_sqrt(exp_avg_sqs)
torch._foreach_div_(
denom_base,
torch._foreach_mul(bias_correction2_sqrt, step_size)
)
eps_over_step_size = torch._foreach_div(step_size, eps)
torch._foreach_reciprocal_(eps_over_step_size)
denom = torch._foreach_add(denom_base, eps_over_step_size)
if caution:
# Apply caution as per 'Cautious Optimizers' - https://arxiv.org/abs/2411.16085
masks = torch._foreach_mul(exp_avgs, grads)
masks = [(m > 0).to(g.dtype) for m, g in zip(masks, grads)] # capturable?
mask_scale = [m.mean() for m in masks]
torch._foreach_maximum_(mask_scale, 1e-3)
#torch._foreach_clamp_min_(mask_scale, 1e-3)
torch._foreach_div_(masks, mask_scale)
exp_avgs = torch._foreach_mul(exp_avgs, masks)
torch._foreach_addcdiv_(params, exp_avgs, denom)
else:
bias_correction1 = [1 - beta1 ** step.item() for step in state_steps]
bias_correction2 = [1 - beta2 ** step.item() for step in state_steps]
step_size = [(lr / bc) * -1 for bc in bias_correction1]
bias_correction2_sqrt = [math.sqrt(bc) for bc in bias_correction2]
if amsgrad:
# Maintains the maximum of all 2nd moment running avg. till now
max_exp_avg_sqs = [torch.view_as_real(x) if torch.is_complex(x) else x for x in max_exp_avg_sqs]
torch._foreach_maximum_(max_exp_avg_sqs, exp_avg_sqs)
denom = torch._foreach_sqrt(max_exp_avg_sqs)
else:
denom = torch._foreach_sqrt(exp_avg_sqs)
torch._foreach_div_(denom, bias_correction2_sqrt)
torch._foreach_add_(denom, eps)
if caution:
# Apply caution as per 'Cautious Optimizers' - https://arxiv.org/abs/2411.16085
masks = torch._foreach_mul(exp_avgs, grads)
masks = [(m > 0).to(g.dtype) for m, g in zip(masks, grads)]
mask_scale = [m.mean() for m in masks]
torch._foreach_maximum_(mask_scale, 1e-3)
#torch._foreach_clamp_min_(mask_scale, 1e-3)
torch._foreach_div_(masks, mask_scale)
exp_avgs = torch._foreach_mul(exp_avgs, masks)
torch._foreach_addcdiv_(params, exp_avgs, denom, step_size)