in training/dataset/transforms.py [0:0]
def resize(datapoint, index, size, max_size=None, square=False, v2=False):
# size can be min_size (scalar) or (w, h) tuple
def get_size(image_size, size, max_size=None):
if isinstance(size, (list, tuple)):
return size[::-1]
else:
return get_size_with_aspect_ratio(image_size, size, max_size)
if square:
size = size, size
else:
cur_size = (
datapoint.frames[index].data.size()[-2:][::-1]
if v2
else datapoint.frames[index].data.size
)
size = get_size(cur_size, size, max_size)
old_size = (
datapoint.frames[index].data.size()[-2:][::-1]
if v2
else datapoint.frames[index].data.size
)
if v2:
datapoint.frames[index].data = Fv2.resize(
datapoint.frames[index].data, size, antialias=True
)
else:
datapoint.frames[index].data = F.resize(datapoint.frames[index].data, size)
new_size = (
datapoint.frames[index].data.size()[-2:][::-1]
if v2
else datapoint.frames[index].data.size
)
for obj in datapoint.frames[index].objects:
if obj.segment is not None:
obj.segment = F.resize(obj.segment[None, None], size).squeeze()
h, w = size
datapoint.frames[index].size = (h, w)
return datapoint