in scripts/adapet/ADAPET/src/data/WSCReader.py [0:0]
def prepare_pet_batch(self, batch, mode="PET1"):
'''
Prepare for train
:param batch:
:return:
'''
list_text = batch["input"]["text"]
list_pronoun = batch["input"]["pronoun"]
list_noun = batch["input"]["noun"]
list_lbl = batch["output"]["lbl"]
list_input_ids = []
bs = len(batch["input"]["text"])
list_mask_idx = np.ones((bs, self.num_lbl, self.config.max_num_lbl_tok)) * self.config.max_text_length - 1
list_lbl_choices = []
for b_idx, (t, p, n, lbl) in enumerate(zip(list_text, list_pronoun, list_noun, list_lbl)):
mask_txt_split_tuple = []
noun_num_lbl_tok = self.get_lbl_num_lbl_tok(n)
num_lbl_tok = min(noun_num_lbl_tok + random.randint(0,3), self.config.max_num_lbl_tok) # random.randint(0,3)
txt_trim = -1
pattern = self.pet_patterns[self._pet_names.index(mode)]
for idx, txt_split in enumerate(pattern):
mask_txt_split_inp = txt_split.replace("[TEXT]", t).replace("[NNP]", p).replace("[MASK]", "[MASK] " * num_lbl_tok)
mask_txt_split_tuple.append(mask_txt_split_inp)
# Trim the paragraph
if "[TEXT]" in txt_split:
txt_trim = idx
input_ids, mask_idx = tokenize_pet_txt(self.tokenizer, self.config, mask_txt_split_tuple[0],
mask_txt_split_tuple[1], mask_txt_split_tuple[2],
mask_txt_split_tuple[0], mask_txt_split_tuple[1],
mask_txt_split_tuple[2], txt_trim)
list_input_ids.append(input_ids)
list_mask_idx[b_idx, 0, :num_lbl_tok] = range(mask_idx, mask_idx + num_lbl_tok)
lbl_mask = n.split() + [self.tokenizer.pad_token] * (num_lbl_tok - noun_num_lbl_tok)
list_lbl_choices.append([' '.join(lbl_mask)])
return torch.tensor(list_input_ids).to(device), torch.tensor(list_mask_idx).to(device), list_lbl_choices