vision/finetuning/SmolVLM2_Video_FT.ipynb (2,909 lines of code) (raw):
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
"<a href=\"https://colab.research.google.com/github/merveenoyan/smollm/blob/main/vision/finetuning/SmolVLM2_Video_FT.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "nc0g2NLpUSGr"
},
"source": [
"# Fine-tune SmolVLM2 on Video Captioning\n",
"In this notebook we will fine-tune SmolVLM2-500M-Video-Instruct on Video Feedback dataset. It is ran on a Colab A100 for full fine-tuning, but you can squeeze it to L4 with QLoRA."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "WIhA1lQ7j0kw",
"outputId": "928f2f4e-6cd8-452b-d621-605550fdd33c"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
" Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m163.5/163.5 kB\u001b[0m \u001b[31m5.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Building wheel for docopt (setup.py) ... \u001b[?25l\u001b[?25hdone\n"
]
}
],
"source": [
"!pip install -q accelerate datasets peft bitsandbytes tensorboard pyav num2words"
]
},
{
"cell_type": "code",
"source": [
"!pip install -q git+https://github.com/huggingface/transformers.git"
],
"metadata": {
"id": "FCYgmJtDRElR"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "XyJaqZZ3uYYl"
},
"outputs": [],
"source": [
"!pip install -q flash-attn --no-build-isolation"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "wAeMA0heVBjT"
},
"source": [
"We will push out model to Hub so we need to authenticate ourselves."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 17,
"referenced_widgets": [
"112da28d935543069e7a1a2abc22f9f4",
"0d22c009aa584ca1a71e32336a7985e0",
"ad17e30049cb4b5aa4046d94690f87d3",
"e77d3520a2d64f9a840652669c9a0ba1",
"1852745b0de44f4281cea0cbb3508459",
"166c19ec6d9f4455a56a0f146d1c0abc",
"f6362bc7b5b24dd592d35a76a1fbf26b",
"e99fbdfc8a22408a8c728a36c8744b24",
"0fee30c9bf2b4bdfad7a37261f92db64",
"4cd8babc92cc4aeba74d2147f28dee7d",
"a4fbf37fe0fe44cfbf72ca1e82af3467",
"be50e04c5629463eb18d029d045f25b3",
"5490c69c251144c4979e346c66ac1e53",
"44d0e1db5f664b3fb7c146c216566776",
"7af918a10ec745d7a3f4a883dbdc8b6a",
"4156b6897089446984196606ef0d3461",
"cf4b5a9cefe84fd9a4d120ab1da6f3f4",
"484155e67e36453c9d1ebd2ea1768eca",
"48bb89c434284b639f45b5929cf8d1a9",
"0ead4ab9bb7648c69352094bfbcb8800"
]
},
"id": "yKd5xtSGj7cm",
"outputId": "a6e841d8-f2d6-44a8-d44d-c0c244d95f9b"
},
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"VBox(children=(HTML(value='<center> <img\\nsrc=https://huggingface.co/front/assets/huggingface_logo-noborder.sv…"
],
"application/vnd.jupyter.widget-view+json": {
"version_major": 2,
"version_minor": 0,
"model_id": "112da28d935543069e7a1a2abc22f9f4"
}
},
"metadata": {}
}
],
"source": [
"from huggingface_hub import notebook_login\n",
"\n",
"notebook_login()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "WRq8ve-LVAzU"
},
"source": [
"In this notebook we will do full fine-tuning on 500M variant. You can also apply QLoRA or LoRA on 2.2B variant, which loads an adapter to the quantized version of the model, saving space. If you want to do full fine-tuning, set `USE_LORA` and `USE_QLORA` to False. If you want to do LoRA, set `USE_QLORA` to False and `USE_LORA` to True.\n",
"\n",
"Small model should learn more so we suggest disabling QLoRA or LoRA when fine-tuning it."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "b9CDMq0duYYn",
"outputId": "e7f53726-e6c3-4f7b-e98b-009bc213ca40"
},
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"/usr/local/lib/python3.11/dist-packages/huggingface_hub/utils/_auth.py:94: UserWarning: \n",
"The secret `HF_TOKEN` does not exist in your Colab secrets.\n",
"To authenticate with the Hugging Face Hub, create a token in your settings tab (https://huggingface.co/settings/tokens), set it as secret in your Google Colab and restart your session.\n",
"You will be able to reuse this secret in all of your notebooks.\n",
"Please note that authentication is recommended but still optional to access public models or datasets.\n",
" warnings.warn(\n",
"You are attempting to use Flash Attention 2.0 with a model not initialized on GPU. Make sure to move the model to GPU after initializing it on CPU with `model.to('cuda')`.\n"
]
},
{
"output_type": "stream",
"name": "stdout",
"text": [
"The model as is is holding: 0.97 of GPU RAM\n"
]
}
],
"source": [
"import torch\n",
"from peft import LoraConfig, prepare_model_for_kbit_training, get_peft_model\n",
"from transformers import AutoProcessor, BitsAndBytesConfig, AutoModelForImageTextToText\n",
"import os\n",
"\n",
"\n",
"USE_LORA = False\n",
"USE_QLORA = False\n",
"SMOL = True\n",
"\n",
"model_id = \"HuggingFaceTB/SmolVLM2-500M-Video-Instruct\" if SMOL else \"HuggingFaceTB/SmolVLM2-2.2B-Instruct\"\n",
"\n",
"processor = AutoProcessor.from_pretrained(\n",
" model_id\n",
")\n",
"\n",
"if USE_QLORA or USE_LORA:\n",
" lora_config = LoraConfig(\n",
" r=8,\n",
" lora_alpha=8,\n",
" lora_dropout=0.1,\n",
" target_modules=['down_proj','o_proj','k_proj','q_proj','gate_proj','up_proj','v_proj'],\n",
" use_dora=False if USE_QLORA else True,\n",
" init_lora_weights=\"gaussian\"\n",
" )\n",
" lora_config.inference_mode = False\n",
" if USE_QLORA:\n",
" bnb_config = BitsAndBytesConfig(\n",
" load_in_4bit=True,\n",
" bnb_4bit_use_double_quant=True,\n",
" bnb_4bit_quant_type=\"nf4\",\n",
" bnb_4bit_compute_dtype=torch.bfloat16\n",
" )\n",
"\n",
" model = AutoModelForImageTextToText.from_pretrained(\n",
" model_id,\n",
" quantization_config=bnb_config if USE_QLORA else None,\n",
" _attn_implementation=\"flash_attention_2\",\n",
" device_map=\"auto\"\n",
" )\n",
" model.add_adapter(lora_config)\n",
" model.enable_adapters()\n",
" model = prepare_model_for_kbit_training(model)\n",
" model = get_peft_model(model, lora_config)\n",
" print(model.get_nb_trainable_parameters())\n",
"else:\n",
" model = AutoModelForImageTextToText.from_pretrained(\n",
" model_id,\n",
" torch_dtype=torch.bfloat16,\n",
" _attn_implementation=\"flash_attention_2\",\n",
" ).to(\"cuda\")\n",
"\n",
" # if you'd like to only fine-tune LLM\n",
" for param in model.model.vision_model.parameters():\n",
" param.requires_grad = False\n",
"\n",
"peak_mem = torch.cuda.max_memory_allocated()\n",
"print(f\"The model as is is holding: {peak_mem / 1024**3:.2f} of GPU RAM\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "LMTtg3dl3NX2"
},
"source": [
"## Loading the dataset and Preprocessing"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "pWHMWTSZ3Pyr"
},
"source": [
"We will load a dataset that contains generated videos and their super short captions of 4k examples. We are loading small chunk of it for training and smaller one for test."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "yASWDFUMPsV5"
},
"outputs": [],
"source": [
"from datasets import load_dataset\n",
"\n",
"ds = load_dataset(\"TIGER-Lab/VideoFeedback\", \"real\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Znf9vMo5rnSd"
},
"outputs": [],
"source": [
"split_ds = ds[\"train\"].train_test_split(test_size=0.5)\n",
"train_ds = split_ds[\"train\"]"
]
},
{
"cell_type": "code",
"source": [
"del split_ds, ds"
],
"metadata": {
"id": "KKEZPwinSwTr"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "lQDEvNquPsV6"
},
"source": [
"Take a sneak peek."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "41LV2UwxPsV6",
"outputId": "7cc91603-2cf8-42fe-b735-7af4aaa33b4f"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"prompt: A dog inside of a dog kennel on a patio., video: https://huggingface.co/datasets/hexuan21/VideoFeedback-videos-mp4/resolve/main/p/p110924.mp4\n"
]
}
],
"source": [
"print(f\"prompt: {train_ds[0]['text prompt']}, video: {train_ds[0]['video link']}\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "5nwMO3n0X7Hv"
},
"source": [
"Let's write our data collating function. We will apply prompt template to have videos and captions together so model can learn to caption. Then we pass the formatted prompts and videos to the processor which processes both."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "e0krVLZ-wNMl"
},
"outputs": [],
"source": [
"from torch.nn.utils.rnn import pad_sequence\n",
"\n",
"image_token_id = processor.tokenizer.additional_special_tokens_ids[\n",
" processor.tokenizer.additional_special_tokens.index(\"<image>\")\n",
"]\n",
"\n",
"def collate_fn(examples):\n",
" instances = []\n",
" for example in examples:\n",
" prompt = example[\"text prompt\"]\n",
"\n",
" user_content = [{\"type\": \"text\", \"text\": \"Caption the video.\"}]\n",
" user_content.append({\"type\": \"video\", \"path\": example[\"video link\"]})\n",
"\n",
" messages = [\n",
" {\"role\": \"user\", \"content\": user_content},\n",
" {\"role\": \"assistant\", \"content\": [{\"type\": \"text\", \"text\": f\"{prompt}\"}]}\n",
" ]\n",
"\n",
" instance = processor.apply_chat_template(messages, add_generation_prompt=False,\n",
" tokenize=True, return_dict=True, return_tensors=\"pt\").to(\"cuda\").to(model.dtype)\n",
" instances.append(instance)\n",
"\n",
"\n",
" input_ids = pad_sequence(\n",
" [inst[\"input_ids\"].squeeze(0) for inst in instances],\n",
" batch_first=True,\n",
" padding_value=processor.tokenizer.pad_token_id\n",
" )\n",
" attention_mask = pad_sequence(\n",
" [inst[\"attention_mask\"].squeeze(0) for inst in instances],\n",
" batch_first=True,\n",
" padding_value=0\n",
" )\n",
" labels = pad_sequence(\n",
" [inst[\"input_ids\"].squeeze(0).clone() for inst in instances],\n",
" batch_first=True,\n",
" padding_value=-100\n",
" )\n",
"\n",
" labels[labels == image_token_id] = -100\n",
"\n",
" out = {\n",
" \"input_ids\": input_ids,\n",
" \"attention_mask\": attention_mask,\n",
" \"labels\": labels\n",
" }\n",
"\n",
"\n",
" # Step 1: figure out maximum frames, height, width across the batch\n",
" pvs = [inst[\"pixel_values\"].squeeze(0) for inst in instances if \"pixel_values\" in inst]\n",
" if pvs: # there is at least one non-None pixel_values\n",
" max_frames = max(pv.shape[0] for pv in pvs)\n",
" max_h = max(pv.shape[-2] for pv in pvs)\n",
" max_w = max(pv.shape[-1] for pv in pvs)\n",
" else:\n",
" max_h = max_w = processor.video_size['longest_edge']\n",
" max_frames = 1\n",
"\n",
" padded_pixel_values_list = []\n",
" for ex in instances:\n",
" pv = ex.get(\"pixel_values\", None).squeeze(0)\n",
"\n",
" if pv is None:\n",
" # text-only => fill pixel data + mask with zeros\n",
" shape_pv = (max_frames, 3, max_h, max_w)\n",
" padded_pv = torch.zeros(shape_pv, dtype=torch.float32)\n",
" else:\n",
" f, c, h, w = pv.shape\n",
" # Prepare final storage\n",
" padded_pv = torch.zeros(\n",
" (max_frames, c, max_h, max_w),\n",
" dtype=pv.dtype,\n",
" device=pv.device\n",
" )\n",
" padded_pv[:f, :, :h, :w] = pv\n",
" padded_pixel_values_list.append(padded_pv)\n",
"\n",
" out[\"pixel_values\"] = torch.stack(padded_pixel_values_list, dim=0)\n",
" return out"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "kEYDjWpE3LD5"
},
"source": [
"## Training"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "QvAs896cdwg8"
},
"source": [
"We can now initialize `Trainer` and initialize `TrainingArguments` to pass to `Trainer`.\n",
"\n",
"Some notes:\n",
"- If you use 8-bit QLoRA with the below setup it uses around 16.4 GB VRAM (beautiful, fits comfortably inside L4, Colab free tier)\n",
"- We use gradient accumulation to simulate a larger batch size.\n",
"- We also save up on memory from intermediate activations by using gradient checkpointing.\n",
"\n",
"**Disclaimer:**\n",
"The techniques here aren't free lunch. The latter two will add additional compute to the training, thus slow down a bit (for reference on two A100s with bsz of 16, we were able to train for 2 hrs 43 mins with the gradient accumulation steps of 4, disabling it reduced it with 2 hr 35 mins).\n",
"If you want to speed-up, you might play around, reduce to 4-bit precision and have a higher batch size. Note that 4-bit might result in model learning less."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "QNE2yWAYrAhD"
},
"outputs": [],
"source": [
"from transformers import TrainingArguments, Trainer\n",
"\n",
"model_name = model_id.split(\"/\")[-1]\n",
"\n",
"training_args = TrainingArguments(\n",
" num_train_epochs=1,\n",
" per_device_train_batch_size=2,\n",
" gradient_accumulation_steps=1,\n",
" warmup_steps=50,\n",
" learning_rate=1e-4,\n",
" weight_decay=0.01,\n",
" logging_steps=25,\n",
" save_strategy=\"steps\",\n",
" save_steps=250,\n",
" save_total_limit=1,\n",
" optim=\"adamw_hf\", # for 8-bit, keep paged_adamw_8bit, else adamw_hf\n",
" bf16=True,\n",
" output_dir=f\"./{model_name}-video-feedback\",\n",
" hub_model_id=f\"{model_name}-video-feedback\",\n",
" remove_unused_columns=False,\n",
" report_to=\"tensorboard\",\n",
" dataloader_pin_memory=False\n",
")\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "oBBSDpBhreJd"
},
"outputs": [],
"source": [
"trainer = Trainer(\n",
" model=model,\n",
" args=training_args,\n",
" data_collator=collate_fn,\n",
" train_dataset=train_ds,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "_QOCpw_-uYYo",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
},
"outputId": "ad1fd1f6-41f9-4fa2-ae89-e75c9876cd65"
},
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"/usr/local/lib/python3.11/dist-packages/transformers/optimization.py:640: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning\n",
" warnings.warn(\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"\n",
" <div>\n",
" \n",
" <progress value='1000' max='1000' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
" [1000/1000 19:51, Epoch 1/1]\n",
" </div>\n",
" <table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: left;\">\n",
" <th>Step</th>\n",
" <th>Training Loss</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <td>25</td>\n",
" <td>3.345600</td>\n",
" </tr>\n",
" <tr>\n",
" <td>50</td>\n",
" <td>0.709500</td>\n",
" </tr>\n",
" <tr>\n",
" <td>75</td>\n",
" <td>0.341000</td>\n",
" </tr>\n",
" <tr>\n",
" <td>100</td>\n",
" <td>0.272200</td>\n",
" </tr>\n",
" <tr>\n",
" <td>125</td>\n",
" <td>0.250600</td>\n",
" </tr>\n",
" <tr>\n",
" <td>150</td>\n",
" <td>0.290400</td>\n",
" </tr>\n",
" <tr>\n",
" <td>175</td>\n",
" <td>0.261100</td>\n",
" </tr>\n",
" <tr>\n",
" <td>200</td>\n",
" <td>0.258000</td>\n",
" </tr>\n",
" <tr>\n",
" <td>225</td>\n",
" <td>0.276500</td>\n",
" </tr>\n",
" <tr>\n",
" <td>250</td>\n",
" <td>0.265900</td>\n",
" </tr>\n",
" <tr>\n",
" <td>275</td>\n",
" <td>0.301500</td>\n",
" </tr>\n",
" <tr>\n",
" <td>300</td>\n",
" <td>0.277900</td>\n",
" </tr>\n",
" <tr>\n",
" <td>325</td>\n",
" <td>0.282800</td>\n",
" </tr>\n",
" <tr>\n",
" <td>350</td>\n",
" <td>0.264100</td>\n",
" </tr>\n",
" <tr>\n",
" <td>375</td>\n",
" <td>0.235500</td>\n",
" </tr>\n",
" <tr>\n",
" <td>400</td>\n",
" <td>0.251400</td>\n",
" </tr>\n",
" <tr>\n",
" <td>425</td>\n",
" <td>0.242500</td>\n",
" </tr>\n",
" <tr>\n",
" <td>450</td>\n",
" <td>0.281100</td>\n",
" </tr>\n",
" <tr>\n",
" <td>475</td>\n",
" <td>0.261000</td>\n",
" </tr>\n",
" <tr>\n",
" <td>500</td>\n",
" <td>0.231800</td>\n",
" </tr>\n",
" <tr>\n",
" <td>525</td>\n",
" <td>0.232200</td>\n",
" </tr>\n",
" <tr>\n",
" <td>550</td>\n",
" <td>0.268100</td>\n",
" </tr>\n",
" <tr>\n",
" <td>575</td>\n",
" <td>0.222400</td>\n",
" </tr>\n",
" <tr>\n",
" <td>600</td>\n",
" <td>0.246600</td>\n",
" </tr>\n",
" <tr>\n",
" <td>625</td>\n",
" <td>0.251700</td>\n",
" </tr>\n",
" <tr>\n",
" <td>650</td>\n",
" <td>0.257800</td>\n",
" </tr>\n",
" <tr>\n",
" <td>675</td>\n",
" <td>0.241000</td>\n",
" </tr>\n",
" <tr>\n",
" <td>700</td>\n",
" <td>0.229000</td>\n",
" </tr>\n",
" <tr>\n",
" <td>725</td>\n",
" <td>0.236600</td>\n",
" </tr>\n",
" <tr>\n",
" <td>750</td>\n",
" <td>0.220900</td>\n",
" </tr>\n",
" <tr>\n",
" <td>775</td>\n",
" <td>0.271400</td>\n",
" </tr>\n",
" <tr>\n",
" <td>800</td>\n",
" <td>0.259900</td>\n",
" </tr>\n",
" <tr>\n",
" <td>825</td>\n",
" <td>0.243900</td>\n",
" </tr>\n",
" <tr>\n",
" <td>850</td>\n",
" <td>0.236400</td>\n",
" </tr>\n",
" <tr>\n",
" <td>875</td>\n",
" <td>0.227200</td>\n",
" </tr>\n",
" <tr>\n",
" <td>900</td>\n",
" <td>0.227900</td>\n",
" </tr>\n",
" <tr>\n",
" <td>925</td>\n",
" <td>0.263300</td>\n",
" </tr>\n",
" <tr>\n",
" <td>950</td>\n",
" <td>0.255200</td>\n",
" </tr>\n",
" <tr>\n",
" <td>975</td>\n",
" <td>0.250000</td>\n",
" </tr>\n",
" <tr>\n",
" <td>1000</td>\n",
" <td>0.244400</td>\n",
" </tr>\n",
" </tbody>\n",
"</table><p>"
]
},
"metadata": {}
},
{
"output_type": "execute_result",
"data": {
"text/plain": [
"TrainOutput(global_step=1000, training_loss=0.3446595501899719, metrics={'train_runtime': 1194.5916, 'train_samples_per_second': 1.674, 'train_steps_per_second': 0.837, 'total_flos': 1550232912784896.0, 'train_loss': 0.3446595501899719, 'epoch': 1.0})"
]
},
"metadata": {},
"execution_count": 9
}
],
"source": [
"trainer.train()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "0hN0QD9_uYYo",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 214,
"referenced_widgets": [
"50f23a17be4f46b687b1b1df1e70238a",
"f1a0aa50142044f5817f8676103bff58",
"02cb2b35986f4ea294fbf6b2490972d5",
"ecc5cc7a30fa48f2afc708f8a40f50eb",
"6e80b0bf0aa2433fa97d6f43dd21e2cf",
"d7d628d4ef7c4b888fd2f70e472dac10",
"c42bbb0b19a544f58a5737acb1d97a85",
"7cd065e777f54efb857efb92415997b2",
"970c3d13cbbf47da986503c6ad99f506",
"96ba1124ba7642fe9d616b348499d0ef",
"484d11b997454f88902fe507c1156698",
"03e863ab55424bdabbc87bb965562b9b",
"62c1056ac5f14b1caa235010d33f241a",
"a415d0d029ec4225864ed59db18c20b3",
"56cda03822db434bb17b7cadbbaeb81b",
"4e085c242353430b8e32afa3bb260aa9",
"c55a0063346d4c429cbc000bbd612287",
"ba8348a627bc41149e888f0deae68a51",
"bef10393380046c3a842dc979ed8c01f",
"052ce17694bd4d3291ff5a10d2702b4b",
"11775cc8d35442c3a31452d66f6104e7",
"af6707547c5243eb9227efc0eb76134e",
"3d6e35795ba24eed96f2fa842b265e5b",
"84376aa81cae42a18fc49bdded395187",
"805784ce9e65411dbf35373db3680920",
"308ab776682a4e93ac05e06aa98a77f1",
"13ece6fbb1d84f03ae434119de486f07",
"88ef32028fd640de85d75c197eca36eb",
"d926557788ba45c0bef88d9e8a4b56aa",
"a5faec577a9844ea921c2bce1d472b23",
"f1e2134eb4624735842db7c112b515a0",
"0bd50b2853324f5c832821b7174c5ce2",
"077f3bcf99044d168250d1e6c4abbcae",
"bc2065597db04146a6df7ed10de7b93c",
"24cf286de1cf40f299bf0797f74c85eb",
"c349943637234fbc96a2a9f325d3c9f1",
"2d4d2f5ffae5451ebf1583362da3e9a9",
"3cd8e1e9fc234219b8fbd4161799640f",
"9e604469cb34439c944e84238b1ec055",
"ba94df0961c44b6d974ef882297731d8",
"419572dbd59a4583831961b7d8ecfa4a",
"88cf901fb47a4925930b7deffe98a9ce",
"9a6a8a5bf8f1479eb478a8c81b58aa69",
"3a51fdcde7984422b7a0925057f6cc37"
]
},
"outputId": "20daaa82-d090-4a7b-c655-60eccf851f47"
},
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"Upload 3 LFS files: 0%| | 0/3 [00:00<?, ?it/s]"
],
"application/vnd.jupyter.widget-view+json": {
"version_major": 2,
"version_minor": 0,
"model_id": "50f23a17be4f46b687b1b1df1e70238a"
}
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"events.out.tfevents.1740055910.82ea94387a47.41010.0: 0%| | 0.00/17.1k [00:00<?, ?B/s]"
],
"application/vnd.jupyter.widget-view+json": {
"version_major": 2,
"version_minor": 0,
"model_id": "03e863ab55424bdabbc87bb965562b9b"
}
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"model.safetensors: 0%| | 0.00/1.02G [00:00<?, ?B/s]"
],
"application/vnd.jupyter.widget-view+json": {
"version_major": 2,
"version_minor": 0,
"model_id": "3d6e35795ba24eed96f2fa842b265e5b"
}
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"training_args.bin: 0%| | 0.00/5.43k [00:00<?, ?B/s]"
],
"application/vnd.jupyter.widget-view+json": {
"version_major": 2,
"version_minor": 0,
"model_id": "bc2065597db04146a6df7ed10de7b93c"
}
},
"metadata": {}
},
{
"output_type": "execute_result",
"data": {
"text/plain": [
"CommitInfo(commit_url='https://huggingface.co/merve/SmolVLM2-500M-Video-Instruct-video-feedback/commit/2f33b0685d991475ac091593e224f3e5e7b7cac7', commit_message='End of training', commit_description='', oid='2f33b0685d991475ac091593e224f3e5e7b7cac7', pr_url=None, repo_url=RepoUrl('https://huggingface.co/merve/SmolVLM2-500M-Video-Instruct-video-feedback', endpoint='https://huggingface.co', repo_type='model', repo_id='merve/SmolVLM2-500M-Video-Instruct-video-feedback'), pr_revision=None, pr_num=None)"
],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "string"
}
},
"metadata": {},
"execution_count": 10
}
],
"source": [
"trainer.push_to_hub()"
]
},
{
"cell_type": "markdown",
"source": [
"The test example is a video of a woman walking by, you can download and check from [here](https://huggingface.co/datasets/hexuan21/VideoFeedback-videos-mp4/blob/main/p/p000304.mp4)."
],
"metadata": {
"id": "4dewIZzjfpNx"
}
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "2dkZlDPtPsV7",
"outputId": "d37f856a-5873-4b7c-e807-e0f2a706be94"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"User: Caption the video.You are provided the following series of three frames from a 0:00:03 [H:MM:SS] video.\n",
"\n",
"Frame from 00:00:\n",
"Frame from 00:01:\n",
"Frame from 00:02:\n",
"\n",
"\n",
"Assistant: woman in white shirt walks by\n"
]
}
],
"source": [
"messages = [{\"role\": \"user\",\n",
" \"content\": [{\"type\": \"text\", \"text\": \"Caption the video.\"},\n",
" {\"type\": \"video\", \"path\": \"https://huggingface.co/datasets/hexuan21/VideoFeedback-videos-mp4/resolve/main/p/p000304.mp4\"}]}]\n",
"\n",
"\n",
"inputs = processor.apply_chat_template(messages, add_generation_prompt=True,\n",
" tokenize=True, return_dict=True, return_tensors=\"pt\").to(\"cuda\").to(model.dtype)\n",
"\n",
"generated_ids = model.generate(**inputs, do_sample=False, max_new_tokens=64)\n",
"generated_texts = processor.batch_decode(\n",
" generated_ids,\n",
" skip_special_tokens=True,\n",
")\n",
"\n",
"print(generated_texts[0])"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"gpuType": "A100",
"provenance": [],
"include_colab_link": true
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"112da28d935543069e7a1a2abc22f9f4": {
"model_module": "@jupyter-widgets/controls",
"model_name": "VBoxModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "VBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "VBoxView",
"box_style": "",
"children": [],
"layout": "IPY_MODEL_f6362bc7b5b24dd592d35a76a1fbf26b"
}
},
"0d22c009aa584ca1a71e32336a7985e0": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_e99fbdfc8a22408a8c728a36c8744b24",
"placeholder": "",
"style": "IPY_MODEL_0fee30c9bf2b4bdfad7a37261f92db64",
"value": "<center> <img\nsrc=https://huggingface.co/front/assets/huggingface_logo-noborder.svg\nalt='Hugging Face'> <br> Copy a token from <a\nhref=\"https://huggingface.co/settings/tokens\" target=\"_blank\">your Hugging Face\ntokens page</a> and paste it below. <br> Immediately click login after copying\nyour token or it might be stored in plain text in this notebook file. </center>"
}
},
"ad17e30049cb4b5aa4046d94690f87d3": {
"model_module": "@jupyter-widgets/controls",
"model_name": "PasswordModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "PasswordModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "PasswordView",
"continuous_update": true,
"description": "Token:",
"description_tooltip": null,
"disabled": false,
"layout": "IPY_MODEL_4cd8babc92cc4aeba74d2147f28dee7d",
"placeholder": "",
"style": "IPY_MODEL_a4fbf37fe0fe44cfbf72ca1e82af3467",
"value": ""
}
},
"e77d3520a2d64f9a840652669c9a0ba1": {
"model_module": "@jupyter-widgets/controls",
"model_name": "CheckboxModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "CheckboxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "CheckboxView",
"description": "Add token as git credential?",
"description_tooltip": null,
"disabled": false,
"indent": true,
"layout": "IPY_MODEL_be50e04c5629463eb18d029d045f25b3",
"style": "IPY_MODEL_5490c69c251144c4979e346c66ac1e53",
"value": true
}
},
"1852745b0de44f4281cea0cbb3508459": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ButtonModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ButtonModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ButtonView",
"button_style": "",
"description": "Login",
"disabled": false,
"icon": "",
"layout": "IPY_MODEL_44d0e1db5f664b3fb7c146c216566776",
"style": "IPY_MODEL_7af918a10ec745d7a3f4a883dbdc8b6a",
"tooltip": ""
}
},
"166c19ec6d9f4455a56a0f146d1c0abc": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_4156b6897089446984196606ef0d3461",
"placeholder": "",
"style": "IPY_MODEL_cf4b5a9cefe84fd9a4d120ab1da6f3f4",
"value": "\n<b>Pro Tip:</b> If you don't already have one, you can create a dedicated\n'notebooks' token with 'write' access, that you can then easily reuse for all\nnotebooks. </center>"
}
},
"f6362bc7b5b24dd592d35a76a1fbf26b": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": "center",
"align_self": null,
"border": null,
"bottom": null,
"display": "flex",
"flex": null,
"flex_flow": "column",
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": "50%"
}
},
"e99fbdfc8a22408a8c728a36c8744b24": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"0fee30c9bf2b4bdfad7a37261f92db64": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"4cd8babc92cc4aeba74d2147f28dee7d": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"a4fbf37fe0fe44cfbf72ca1e82af3467": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"be50e04c5629463eb18d029d045f25b3": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"5490c69c251144c4979e346c66ac1e53": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"44d0e1db5f664b3fb7c146c216566776": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"7af918a10ec745d7a3f4a883dbdc8b6a": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ButtonStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ButtonStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"button_color": null,
"font_weight": ""
}
},
"4156b6897089446984196606ef0d3461": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"cf4b5a9cefe84fd9a4d120ab1da6f3f4": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"484155e67e36453c9d1ebd2ea1768eca": {
"model_module": "@jupyter-widgets/controls",
"model_name": "LabelModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "LabelModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "LabelView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_48bb89c434284b639f45b5929cf8d1a9",
"placeholder": "",
"style": "IPY_MODEL_0ead4ab9bb7648c69352094bfbcb8800",
"value": "Connecting..."
}
},
"48bb89c434284b639f45b5929cf8d1a9": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"0ead4ab9bb7648c69352094bfbcb8800": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"50f23a17be4f46b687b1b1df1e70238a": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_f1a0aa50142044f5817f8676103bff58",
"IPY_MODEL_02cb2b35986f4ea294fbf6b2490972d5",
"IPY_MODEL_ecc5cc7a30fa48f2afc708f8a40f50eb"
],
"layout": "IPY_MODEL_6e80b0bf0aa2433fa97d6f43dd21e2cf"
}
},
"f1a0aa50142044f5817f8676103bff58": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_d7d628d4ef7c4b888fd2f70e472dac10",
"placeholder": "",
"style": "IPY_MODEL_c42bbb0b19a544f58a5737acb1d97a85",
"value": "Upload 3 LFS files: 100%"
}
},
"02cb2b35986f4ea294fbf6b2490972d5": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_7cd065e777f54efb857efb92415997b2",
"max": 3,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_970c3d13cbbf47da986503c6ad99f506",
"value": 3
}
},
"ecc5cc7a30fa48f2afc708f8a40f50eb": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_96ba1124ba7642fe9d616b348499d0ef",
"placeholder": "",
"style": "IPY_MODEL_484d11b997454f88902fe507c1156698",
"value": " 3/3 [00:24<00:00, 24.17s/it]"
}
},
"6e80b0bf0aa2433fa97d6f43dd21e2cf": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"d7d628d4ef7c4b888fd2f70e472dac10": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"c42bbb0b19a544f58a5737acb1d97a85": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"7cd065e777f54efb857efb92415997b2": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"970c3d13cbbf47da986503c6ad99f506": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"96ba1124ba7642fe9d616b348499d0ef": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"484d11b997454f88902fe507c1156698": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"03e863ab55424bdabbc87bb965562b9b": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_62c1056ac5f14b1caa235010d33f241a",
"IPY_MODEL_a415d0d029ec4225864ed59db18c20b3",
"IPY_MODEL_56cda03822db434bb17b7cadbbaeb81b"
],
"layout": "IPY_MODEL_4e085c242353430b8e32afa3bb260aa9"
}
},
"62c1056ac5f14b1caa235010d33f241a": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_c55a0063346d4c429cbc000bbd612287",
"placeholder": "",
"style": "IPY_MODEL_ba8348a627bc41149e888f0deae68a51",
"value": "events.out.tfevents.1740055910.82ea94387a47.41010.0: 100%"
}
},
"a415d0d029ec4225864ed59db18c20b3": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_bef10393380046c3a842dc979ed8c01f",
"max": 17132,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_052ce17694bd4d3291ff5a10d2702b4b",
"value": 17132
}
},
"56cda03822db434bb17b7cadbbaeb81b": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_11775cc8d35442c3a31452d66f6104e7",
"placeholder": "",
"style": "IPY_MODEL_af6707547c5243eb9227efc0eb76134e",
"value": " 17.1k/17.1k [00:00<00:00, 121kB/s]"
}
},
"4e085c242353430b8e32afa3bb260aa9": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"c55a0063346d4c429cbc000bbd612287": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"ba8348a627bc41149e888f0deae68a51": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"bef10393380046c3a842dc979ed8c01f": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"052ce17694bd4d3291ff5a10d2702b4b": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"11775cc8d35442c3a31452d66f6104e7": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"af6707547c5243eb9227efc0eb76134e": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"3d6e35795ba24eed96f2fa842b265e5b": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_84376aa81cae42a18fc49bdded395187",
"IPY_MODEL_805784ce9e65411dbf35373db3680920",
"IPY_MODEL_308ab776682a4e93ac05e06aa98a77f1"
],
"layout": "IPY_MODEL_13ece6fbb1d84f03ae434119de486f07"
}
},
"84376aa81cae42a18fc49bdded395187": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_88ef32028fd640de85d75c197eca36eb",
"placeholder": "",
"style": "IPY_MODEL_d926557788ba45c0bef88d9e8a4b56aa",
"value": "model.safetensors: 100%"
}
},
"805784ce9e65411dbf35373db3680920": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_a5faec577a9844ea921c2bce1d472b23",
"max": 1015025832,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_f1e2134eb4624735842db7c112b515a0",
"value": 1015025832
}
},
"308ab776682a4e93ac05e06aa98a77f1": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_0bd50b2853324f5c832821b7174c5ce2",
"placeholder": "",
"style": "IPY_MODEL_077f3bcf99044d168250d1e6c4abbcae",
"value": " 1.02G/1.02G [00:23<00:00, 46.4MB/s]"
}
},
"13ece6fbb1d84f03ae434119de486f07": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"88ef32028fd640de85d75c197eca36eb": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"d926557788ba45c0bef88d9e8a4b56aa": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"a5faec577a9844ea921c2bce1d472b23": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"f1e2134eb4624735842db7c112b515a0": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"0bd50b2853324f5c832821b7174c5ce2": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"077f3bcf99044d168250d1e6c4abbcae": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"bc2065597db04146a6df7ed10de7b93c": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_24cf286de1cf40f299bf0797f74c85eb",
"IPY_MODEL_c349943637234fbc96a2a9f325d3c9f1",
"IPY_MODEL_2d4d2f5ffae5451ebf1583362da3e9a9"
],
"layout": "IPY_MODEL_3cd8e1e9fc234219b8fbd4161799640f"
}
},
"24cf286de1cf40f299bf0797f74c85eb": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_9e604469cb34439c944e84238b1ec055",
"placeholder": "",
"style": "IPY_MODEL_ba94df0961c44b6d974ef882297731d8",
"value": "training_args.bin: 100%"
}
},
"c349943637234fbc96a2a9f325d3c9f1": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_419572dbd59a4583831961b7d8ecfa4a",
"max": 5432,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_88cf901fb47a4925930b7deffe98a9ce",
"value": 5432
}
},
"2d4d2f5ffae5451ebf1583362da3e9a9": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_9a6a8a5bf8f1479eb478a8c81b58aa69",
"placeholder": "",
"style": "IPY_MODEL_3a51fdcde7984422b7a0925057f6cc37",
"value": " 5.43k/5.43k [00:00<00:00, 40.2kB/s]"
}
},
"3cd8e1e9fc234219b8fbd4161799640f": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"9e604469cb34439c944e84238b1ec055": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"ba94df0961c44b6d974ef882297731d8": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"419572dbd59a4583831961b7d8ecfa4a": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"88cf901fb47a4925930b7deffe98a9ce": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"9a6a8a5bf8f1479eb478a8c81b58aa69": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"3a51fdcde7984422b7a0925057f6cc37": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
}
}
}
},
"nbformat": 4,
"nbformat_minor": 0
}