vision/m4/models/vmistral/evaluation_classification_in_context_vmistral.py (3,158 lines of code) (raw):

from typing import List from m4.evaluation.custom_metrics.unfolded_classification_metrics import ClassifMetrics from m4.models.vgpt2.evaluation_classification_in_context_vgpt2 import Vgpt2ClassificationInContext class VMistralClassificationInContext(Vgpt2ClassificationInContext): model_class: str = "VMistralForCausalLM" tokenizer_max_seq_len = 4096 class Food101VMistralClassificationInContextAccWithKLAndEntropy(VMistralClassificationInContext): dataset_name: str = "food101" metric_name: str = "UnfoldedClassificationMetrics" metric_kwargs = { "metrics": [ ClassifMetrics.ACCURACY, ClassifMetrics.KL_DISTRIBUTION, ClassifMetrics.KL_MEAN, ClassifMetrics.ENTROPY_DISTRIBUTION, ClassifMetrics.ENTROPY_MEAN, ] } default_query_split_name: str = "validation" default_support_split_name: str = "train" label_column_name: str = "label" image_column_names: List[str] = ["image"] length_normalize: bool = False prompt_templates_dict = { 0: { "prefix": None, "example": "<image>a photo of a {class_name}.", }, } class Food101SampleVMistralClassificationInContextAccWithKLAndEntropy( Food101VMistralClassificationInContextAccWithKLAndEntropy ): dataset_name: str = "HuggingFaceM4/food101-Sample" class Cifar10VMistralClassificationInContextAccWithKLAndEntropy(VMistralClassificationInContext): dataset_name: str = "cifar10" metric_name: str = "UnfoldedClassificationMetrics" metric_kwargs = { "metrics": [ ClassifMetrics.ACCURACY, ClassifMetrics.KL_DISTRIBUTION, ClassifMetrics.KL_MEAN, ClassifMetrics.ENTROPY_DISTRIBUTION, ClassifMetrics.ENTROPY_MEAN, ] } default_query_split_name: str = "test" default_support_split_name: str = "train" label_column_name: str = "label" image_column_names: List[str] = ["img"] length_normalize: bool = False prompt_templates_dict = { 0: { "prefix": None, "example": "<image>a photo of a {class_name}.", }, } class Cifar10SampleVMistralClassificationInContextAccWithKLAndEntropy( Cifar10VMistralClassificationInContextAccWithKLAndEntropy ): dataset_name: str = "HuggingFaceM4/cifar10-Sample" class Cifar10DummyVMistralClassificationInContextAccWithKLAndEntropy( Cifar10VMistralClassificationInContextAccWithKLAndEntropy ): dataset_name: str = "HuggingFaceM4/cifar10-Dummy" class Cifar100VMistralClassificationInContextAccWithKLAndEntropy(VMistralClassificationInContext): dataset_name: str = "cifar100" metric_name: str = "UnfoldedClassificationMetrics" metric_kwargs = { "metrics": [ ClassifMetrics.ACCURACY, ClassifMetrics.KL_DISTRIBUTION, ClassifMetrics.KL_MEAN, ClassifMetrics.ENTROPY_DISTRIBUTION, ClassifMetrics.ENTROPY_MEAN, ] } default_query_split_name: str = "test" default_support_split_name: str = "train" label_column_name: str = "fine_label" image_column_names: List[str] = ["img"] length_normalize: bool = False prompt_templates_dict = { 0: { "prefix": None, "example": "<image>a photo of a {class_name}.", }, } class Cifar100SampleVMistralClassificationInContextAccWithKLAndEntropy( Cifar100VMistralClassificationInContextAccWithKLAndEntropy ): dataset_name: str = "HuggingFaceM4/cifar100-Sample" class StanfordCarsVMistralClassificationInContextAccWithKLAndEntropy(VMistralClassificationInContext): dataset_name: str = "HuggingFaceM4/Stanford-Cars" metric_name: str = "UnfoldedClassificationMetrics" metric_kwargs = { "metrics": [ ClassifMetrics.ACCURACY, ClassifMetrics.KL_DISTRIBUTION, ClassifMetrics.KL_MEAN, ClassifMetrics.ENTROPY_DISTRIBUTION, ClassifMetrics.ENTROPY_MEAN, ] } default_query_split_name: str = "test" default_support_split_name: str = "train" label_column_name: str = "label" image_column_names: List[str] = ["image"] length_normalize: bool = False prompt_templates_dict = { 0: { "prefix": None, "example": "<image>a photo of a {class_name}.", }, } class StanfordCarsSampleVMistralClassificationInContextAccWithKLAndEntropy( StanfordCarsVMistralClassificationInContextAccWithKLAndEntropy ): dataset_name: str = "HuggingFaceM4/Stanford-Cars-Sample" class DTDVMistralClassificationInContextAccWithKLAndEntropy(VMistralClassificationInContext): dataset_name: str = "HuggingFaceM4/DTD_Describable-Textures-Dataset" dataset_config = "partition_1" metric_name: str = "UnfoldedClassificationMetrics" metric_kwargs = { "metrics": [ ClassifMetrics.ACCURACY, ClassifMetrics.KL_DISTRIBUTION, ClassifMetrics.KL_MEAN, ClassifMetrics.ENTROPY_DISTRIBUTION, ClassifMetrics.ENTROPY_MEAN, ] } default_query_split_name: str = "test" default_support_split_name: str = "train" label_column_name: str = "label" image_column_names: List[str] = ["image"] length_normalize: bool = False prompt_templates_dict = { 0: { "prefix": None, "example": "<image>a photo of a {class_name} texture.", }, } class DTDSampleVMistralClassificationInContextAccWithKLAndEntropy( DTDVMistralClassificationInContextAccWithKLAndEntropy ): dataset_name: str = "HuggingFaceM4/DTD_Describable-Textures-Dataset-partition_1-Sample" class RenderedSST2VMistralClassificationInContextAccWithKLAndEntropy(VMistralClassificationInContext): dataset_name: str = "HuggingFaceM4/RenderedSST2" metric_name: str = "UnfoldedClassificationMetrics" metric_kwargs = { "metrics": [ ClassifMetrics.ACCURACY, ClassifMetrics.KL_DISTRIBUTION, ClassifMetrics.KL_MEAN, ClassifMetrics.ENTROPY_DISTRIBUTION, ClassifMetrics.ENTROPY_MEAN, ] } default_query_split_name: str = "test" default_support_split_name: str = "train" label_column_name: str = "label" image_column_names: List[str] = ["image"] length_normalize: bool = False prompt_templates_dict = { 0: { "prefix": None, "example": "<image>a {class_name} review of a movie.", }, } class RenderedSST2SampleVMistralClassificationInContextAccWithKLAndEntropy( RenderedSST2VMistralClassificationInContextAccWithKLAndEntropy ): dataset_name: str = "HuggingFaceM4/RenderedSST2-Sample" class RenderedSST2NewSplitsVMistralClassificationInContextAccWithKLAndEntropy(VMistralClassificationInContext): dataset_name: str = "HuggingFaceM4/RenderedSST2_support_query_sets" default_query_split_name: str = "validation_query_set" default_support_split_name: str = "validation_support_set" validation_query_split_name: str = "validation_query_set" validation_support_split_name: str = "validation_support_set" test_query_split_name: str = "test_query_set" test_support_split_name: str = "test_support_set" metric_name: str = "UnfoldedClassificationMetrics" metric_kwargs = { "metrics": [ ClassifMetrics.ACCURACY, ClassifMetrics.KL_DISTRIBUTION, ClassifMetrics.KL_MEAN, ClassifMetrics.ENTROPY_DISTRIBUTION, ClassifMetrics.ENTROPY_MEAN, ] } label_column_name: str = "label" image_column_names: List[str] = ["image"] length_normalize: bool = False prompt_templates_dict = { 0: { "prefix": None, "example": "<image>a {class_name} review of a movie.", }, 1: { "prefix": ( "{bos_token}Instruction: A movie review is written on an image. Say if it is positive or negative.\n" ), "example": "<image>{class_name}\n", }, 2: { "prefix": ( "{bos_token}Instruction: A movie review is written on an image. Say if it is positive or negative.\n" ), "example": "Image:<image>Sentiment: {class_name}.\n", }, 3: { "prefix": ( "{bos_token}Task: Determine whether the sentiment expressed in a written movie review, which is" " presented as an image, is positive or negative.\n" ), "example": "Image:<image>Sentiment: {class_name}.\n", }, 4: { "prefix": ( "{bos_token}Task: Determine whether the sentiment expressed in a written movie review, which is" " presented as an image, is positive or negative.\n" ), "example": "Image:<image>The sentiment is {class_name}.\n", }, } selected_prompt_template_id = 2 class SUN397VMistralClassificationInContextAccWithKLAndEntropy(VMistralClassificationInContext): dataset_name: str = "HuggingFaceM4/sun397" dataset_config = "standard-part1-120k" metric_name: str = "UnfoldedClassificationMetrics" metric_kwargs = { "metrics": [ ClassifMetrics.ACCURACY, ClassifMetrics.KL_DISTRIBUTION, ClassifMetrics.KL_MEAN, ClassifMetrics.ENTROPY_DISTRIBUTION, ClassifMetrics.ENTROPY_MEAN, ] } default_query_split_name: str = "test" default_support_split_name: str = "train" label_column_name: str = "label" image_column_names: List[str] = ["image"] length_normalize: bool = False prompt_templates_dict = { 0: { "prefix": None, "example": "<image>a photo of a {class_name}.", }, } class SUN397SampleVMistralClassificationInContextAccWithKLAndEntropy( SUN397VMistralClassificationInContextAccWithKLAndEntropy ): dataset_name: str = "HuggingFaceM4/sun397-standard-part1-120k-Sample" dataset_config = None class OxfordPetsVMistralClassificationInContextMeanPerClassAccWithKLAndEntropy(VMistralClassificationInContext): dataset_name: str = "HuggingFaceM4/Oxford-IIIT-Pet" metric_name: str = "UnfoldedClassificationMetrics" metric_kwargs = { "metrics": [ ClassifMetrics.MEAN_PER_CLASS_ACCURACY, ClassifMetrics.KL_DISTRIBUTION, ClassifMetrics.KL_MEAN, ClassifMetrics.ENTROPY_DISTRIBUTION, ClassifMetrics.ENTROPY_MEAN, ] } default_query_split_name: str = "test" default_support_split_name: str = "train" label_column_name: str = "label" image_column_names: List[str] = ["image"] length_normalize: bool = False prompt_templates_dict = { 0: { "prefix": None, "example": "<image>A photo of a {class_name}, a type of pet.", }, } class OxfordPetsSampleVMistralClassificationInContextMeanPerClassAccWithKLAndEntropy( OxfordPetsVMistralClassificationInContextMeanPerClassAccWithKLAndEntropy ): dataset_name: str = "HuggingFaceM4/Oxford-IIIT-Pet-Sample" dataset_config = None class Caltech101VMistralClassificationInContextMeanPerClassAccWithKLAndEntropy(VMistralClassificationInContext): dataset_name: str = "HuggingFaceM4/Caltech-101" dataset_config = "with_background_category" metric_name: str = "UnfoldedClassificationMetrics" metric_kwargs = { "metrics": [ ClassifMetrics.MEAN_PER_CLASS_ACCURACY, ClassifMetrics.KL_DISTRIBUTION, ClassifMetrics.KL_MEAN, ClassifMetrics.ENTROPY_DISTRIBUTION, ClassifMetrics.ENTROPY_MEAN, ] } default_query_split_name: str = "test" default_support_split_name: str = "train" label_column_name: str = "label" image_column_names: List[str] = ["image"] length_normalize: bool = False prompt_templates_dict = { 0: { "prefix": None, "example": "<image>a photo of a {class_name}.", }, } class Caltech101SampleVMistralClassificationInContextMeanPerClassAccWithKLAndEntropy( Caltech101VMistralClassificationInContextMeanPerClassAccWithKLAndEntropy ): dataset_name: str = "HuggingFaceM4/Caltech-101-with_background_category-Sample" dataset_config = None class ImageNet1kVMistralClassificationInContextAccWithKLAndEntropy(VMistralClassificationInContext): dataset_name: str = "imagenet-1k" metric_name: str = "UnfoldedClassificationMetrics" metric_kwargs = { "metrics": [ ClassifMetrics.ACCURACY, ClassifMetrics.KL_DISTRIBUTION, ClassifMetrics.KL_MEAN, ClassifMetrics.ENTROPY_DISTRIBUTION, ClassifMetrics.ENTROPY_MEAN, ] } default_query_split_name: str = "validation" default_support_split_name: str = "train" label_column_name: str = "label" image_column_names: List[str] = ["image"] length_normalize: bool = False mapping_class_names_to_prompt_names: dict = { "tench, Tinca tinca": "tench", "goldfish, Carassius auratus": "goldfish", "great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias": "great white shark", "tiger shark, Galeocerdo cuvieri": "tiger shark", "hammerhead, hammerhead shark": "hammerhead shark", "electric ray, crampfish, numbfish, torpedo": "electric ray", "stingray": "stingray", "cock": "rooster", "hen": "hen", "ostrich, Struthio camelus": "ostrich", "brambling, Fringilla montifringilla": "brambling", "goldfinch, Carduelis carduelis": "goldfinch", "house finch, linnet, Carpodacus mexicanus": "house finch", "junco, snowbird": "junco", "indigo bunting, indigo finch, indigo bird, Passerina cyanea": "indigo bunting", "robin, American robin, Turdus migratorius": "American robin", "bulbul": "bulbul", "jay": "jay", "magpie": "magpie", "chickadee": "chickadee", "water ouzel, dipper": "American dipper", "kite": "kite (bird of prey)", "bald eagle, American eagle, Haliaeetus leucocephalus": "bald eagle", "vulture": "vulture", "great grey owl, great gray owl, Strix nebulosa": "great grey owl", "European fire salamander, Salamandra salamandra": "fire salamander", "common newt, Triturus vulgaris": "smooth newt", "eft": "newt", "spotted salamander, Ambystoma maculatum": "spotted salamander", "axolotl, mud puppy, Ambystoma mexicanum": "axolotl", "bullfrog, Rana catesbeiana": "American bullfrog", "tree frog, tree-frog": "tree frog", "tailed frog, bell toad, ribbed toad, tailed toad, Ascaphus trui": "tailed frog", "loggerhead, loggerhead turtle, Caretta caretta": "loggerhead sea turtle", "leatherback turtle, leatherback, leathery turtle, Dermochelys coriacea": "leatherback sea turtle", "mud turtle": "mud turtle", "terrapin": "terrapin", "box turtle, box tortoise": "box turtle", "banded gecko": "banded gecko", "common iguana, iguana, Iguana iguana": "green iguana", "American chameleon, anole, Anolis carolinensis": "Carolina anole", "whiptail, whiptail lizard": "desert grassland whiptail lizard", "agama": "agama", "frilled lizard, Chlamydosaurus kingi": "frilled-necked lizard", "alligator lizard": "alligator lizard", "Gila monster, Heloderma suspectum": "Gila monster", "green lizard, Lacerta viridis": "European green lizard", "African chameleon, Chamaeleo chamaeleon": "chameleon", "Komodo dragon, Komodo lizard, dragon lizard, giant lizard, Varanus komodoensis": "Komodo dragon", "African crocodile, Nile crocodile, Crocodylus niloticus": "Nile crocodile", "American alligator, Alligator mississipiensis": "American alligator", "triceratops": "triceratops", "thunder snake, worm snake, Carphophis amoenus": "worm snake", "ringneck snake, ring-necked snake, ring snake": "ring-necked snake", "hognose snake, puff adder, sand viper": "eastern hog-nosed snake", "green snake, grass snake": "smooth green snake", "king snake, kingsnake": "kingsnake", "garter snake, grass snake": "garter snake", "water snake": "water snake", "vine snake": "vine snake", "night snake, Hypsiglena torquata": "night snake", "boa constrictor, Constrictor constrictor": "boa constrictor", "rock python, rock snake, Python sebae": "African rock python", "Indian cobra, Naja naja": "Indian cobra", "green mamba": "green mamba", "sea snake": "sea snake", "horned viper, cerastes, sand viper, horned asp, Cerastes cornutus": "Saharan horned viper", "diamondback, diamondback rattlesnake, Crotalus adamanteus": "eastern diamondback rattlesnake", "sidewinder, horned rattlesnake, Crotalus cerastes": "sidewinder rattlesnake", "trilobite": "trilobite", "harvestman, daddy longlegs, Phalangium opilio": "harvestman", "scorpion": "scorpion", "black and gold garden spider, Argiope aurantia": "yellow garden spider", "barn spider, Araneus cavaticus": "barn spider", "garden spider, Aranea diademata": "European garden spider", "black widow, Latrodectus mactans": "southern black widow", "tarantula": "tarantula", "wolf spider, hunting spider": "wolf spider", "tick": "tick", "centipede": "centipede", "black grouse": "black grouse", "ptarmigan": "ptarmigan", "ruffed grouse, partridge, Bonasa umbellus": "ruffed grouse", "prairie chicken, prairie grouse, prairie fowl": "prairie grouse", "peacock": "peafowl", "quail": "quail", "partridge": "partridge", "African grey, African gray, Psittacus erithacus": "african grey parrot", "macaw": "macaw", "sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita": "sulphur-crested cockatoo", "lorikeet": "lorikeet", "coucal": "coucal", "bee eater": "bee eater", "hornbill": "hornbill", "hummingbird": "hummingbird", "jacamar": "jacamar", "toucan": "toucan", "drake": "duck", "red-breasted merganser, Mergus serrator": "red-breasted merganser", "goose": "goose", "black swan, Cygnus atratus": "black swan", "tusker": "tusker", "echidna, spiny anteater, anteater": "echidna", "platypus, duckbill, duckbilled platypus, duck-billed platypus, Ornithorhynchus anatinus": "platypus", "wallaby, brush kangaroo": "wallaby", "koala, koala bear, kangaroo bear, native bear, Phascolarctos cinereus": "koala", "wombat": "wombat", "jellyfish": "jellyfish", "sea anemone, anemone": "sea anemone", "brain coral": "brain coral", "flatworm, platyhelminth": "flatworm", "nematode, nematode worm, roundworm": "nematode", "conch": "conch", "snail": "snail", "slug": "slug", "sea slug, nudibranch": "sea slug", "chiton, coat-of-mail shell, sea cradle, polyplacophore": "chiton", "chambered nautilus, pearly nautilus, nautilus": "chambered nautilus", "Dungeness crab, Cancer magister": "Dungeness crab", "rock crab, Cancer irroratus": "rock crab", "fiddler crab": "fiddler crab", "king crab, Alaska crab, Alaskan king crab, Alaska king crab, Paralithodes camtschatica": "red king crab", "American lobster, Northern lobster, Maine lobster, Homarus americanus": "American lobster", "spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish": "spiny lobster", "crayfish, crawfish, crawdad, crawdaddy": "crayfish", "hermit crab": "hermit crab", "isopod": "isopod", "white stork, Ciconia ciconia": "white stork", "black stork, Ciconia nigra": "black stork", "spoonbill": "spoonbill", "flamingo": "flamingo", "little blue heron, Egretta caerulea": "little blue heron", "American egret, great white heron, Egretta albus": "great egret", "bittern": "bittern bird", "crane": "crane bird", "limpkin, Aramus pictus": "limpkin", "European gallinule, Porphyrio porphyrio": "common gallinule", "American coot, marsh hen, mud hen, water hen, Fulica americana": "American coot", "bustard": "bustard", "ruddy turnstone, Arenaria interpres": "ruddy turnstone", "red-backed sandpiper, dunlin, Erolia alpina": "dunlin", "redshank, Tringa totanus": "common redshank", "dowitcher": "dowitcher", "oystercatcher, oyster catcher": "oystercatcher", "pelican": "pelican", "king penguin, Aptenodytes patagonica": "king penguin", "albatross, mollymawk": "albatross", "grey whale, gray whale, devilfish, Eschrichtius gibbosus, Eschrichtius robustus": "grey whale", "killer whale, killer, orca, grampus, sea wolf, Orcinus orca": "killer whale", "dugong, Dugong dugon": "dugong", "sea lion": "sea lion", "Chihuahua": "Chihuahua", "Japanese spaniel": "Japanese Chin", "Maltese dog, Maltese terrier, Maltese": "Maltese", "Pekinese, Pekingese, Peke": "Pekingese", "Shih-Tzu": "Shih Tzu", "Blenheim spaniel": "King Charles Spaniel", "papillon": "Papillon", "toy terrier": "toy terrier", "Rhodesian ridgeback": "Rhodesian Ridgeback", "Afghan hound, Afghan": "Afghan Hound", "basset, basset hound": "Basset Hound", "beagle": "Beagle", "bloodhound, sleuthhound": "Bloodhound", "bluetick": "Bluetick Coonhound", "black-and-tan coonhound": "Black and Tan Coonhound", "Walker hound, Walker foxhound": "Treeing Walker Coonhound", "English foxhound": "English foxhound", "redbone": "Redbone Coonhound", "borzoi, Russian wolfhound": "borzoi", "Irish wolfhound": "Irish Wolfhound", "Italian greyhound": "Italian Greyhound", "whippet": "Whippet", "Ibizan hound, Ibizan Podenco": "Ibizan Hound", "Norwegian elkhound, elkhound": "Norwegian Elkhound", "otterhound, otter hound": "Otterhound", "Saluki, gazelle hound": "Saluki", "Scottish deerhound, deerhound": "Scottish Deerhound", "Weimaraner": "Weimaraner", "Staffordshire bullterrier, Staffordshire bull terrier": "Staffordshire Bull Terrier", "American Staffordshire terrier, Staffordshire terrier, American pit bull terrier, pit bull terrier": ( "American Staffordshire Terrier" ), "Bedlington terrier": "Bedlington Terrier", "Border terrier": "Border Terrier", "Kerry blue terrier": "Kerry Blue Terrier", "Irish terrier": "Irish Terrier", "Norfolk terrier": "Norfolk Terrier", "Norwich terrier": "Norwich Terrier", "Yorkshire terrier": "Yorkshire Terrier", "wire-haired fox terrier": "Wire Fox Terrier", "Lakeland terrier": "Lakeland Terrier", "Sealyham terrier, Sealyham": "Sealyham Terrier", "Airedale, Airedale terrier": "Airedale Terrier", "cairn, cairn terrier": "Cairn Terrier", "Australian terrier": "Australian Terrier", "Dandie Dinmont, Dandie Dinmont terrier": "Dandie Dinmont Terrier", "Boston bull, Boston terrier": "Boston Terrier", "miniature schnauzer": "Miniature Schnauzer", "giant schnauzer": "Giant Schnauzer", "standard schnauzer": "Standard Schnauzer", "Scotch terrier, Scottish terrier, Scottie": "Scottish Terrier", "Tibetan terrier, chrysanthemum dog": "Tibetan Terrier", "silky terrier, Sydney silky": "Australian Silky Terrier", "soft-coated wheaten terrier": "Soft-coated Wheaten Terrier", "West Highland white terrier": "West Highland White Terrier", "Lhasa, Lhasa apso": "Lhasa Apso", "flat-coated retriever": "Flat-Coated Retriever", "curly-coated retriever": "Curly-coated Retriever", "golden retriever": "Golden Retriever", "Labrador retriever": "Labrador Retriever", "Chesapeake Bay retriever": "Chesapeake Bay Retriever", "German short-haired pointer": "German Shorthaired Pointer", "vizsla, Hungarian pointer": "Vizsla", "English setter": "English Setter", "Irish setter, red setter": "Irish Setter", "Gordon setter": "Gordon Setter", "Brittany spaniel": "Brittany dog", "clumber, clumber spaniel": "Clumber Spaniel", "English springer, English springer spaniel": "English Springer Spaniel", "Welsh springer spaniel": "Welsh Springer Spaniel", "cocker spaniel, English cocker spaniel, cocker": "Cocker Spaniel", "Sussex spaniel": "Sussex Spaniel", "Irish water spaniel": "Irish Water Spaniel", "kuvasz": "Kuvasz", "schipperke": "Schipperke", "groenendael": "Groenendael dog", "malinois": "Malinois", "briard": "Briard", "kelpie": "Australian Kelpie", "komondor": "Komondor", "Old English sheepdog, bobtail": "Old English Sheepdog", "Shetland sheepdog, Shetland sheep dog, Shetland": "Shetland Sheepdog", "collie": "collie", "Border collie": "Border Collie", "Bouvier des Flandres, Bouviers des Flandres": "Bouvier des Flandres dog", "Rottweiler": "Rottweiler", "German shepherd, German shepherd dog, German police dog, alsatian": "German Shepherd Dog", "Doberman, Doberman pinscher": "Dobermann", "miniature pinscher": "Miniature Pinscher", "Greater Swiss Mountain dog": "Greater Swiss Mountain Dog", "Bernese mountain dog": "Bernese Mountain Dog", "Appenzeller": "Appenzeller Sennenhund", "EntleBucher": "Entlebucher Sennenhund", "boxer": "Boxer", "bull mastiff": "Bullmastiff", "Tibetan mastiff": "Tibetan Mastiff", "French bulldog": "French Bulldog", "Great Dane": "Great Dane", "Saint Bernard, St Bernard": "St. Bernard", "Eskimo dog, husky": "husky", "malamute, malemute, Alaskan malamute": "Alaskan Malamute", "Siberian husky": "Siberian Husky", "dalmatian, coach dog, carriage dog": "Dalmatian", "affenpinscher, monkey pinscher, monkey dog": "Affenpinscher", "basenji": "Basenji", "pug, pug-dog": "pug", "Leonberg": "Leonberger", "Newfoundland, Newfoundland dog": "Newfoundland dog", "Great Pyrenees": "Great Pyrenees dog", "Samoyed, Samoyede": "Samoyed", "Pomeranian": "Pomeranian", "chow, chow chow": "Chow Chow", "keeshond": "Keeshond", "Brabancon griffon": "brussels griffon", "Pembroke, Pembroke Welsh corgi": "Pembroke Welsh Corgi", "Cardigan, Cardigan Welsh corgi": "Cardigan Welsh Corgi", "toy poodle": "Toy Poodle", "miniature poodle": "Miniature Poodle", "standard poodle": "Standard Poodle", "Mexican hairless": "Mexican hairless dog (xoloitzcuintli)", "timber wolf, grey wolf, gray wolf, Canis lupus": "grey wolf", "white wolf, Arctic wolf, Canis lupus tundrarum": "Alaskan tundra wolf", "red wolf, maned wolf, Canis rufus, Canis niger": "red wolf or maned wolf", "coyote, prairie wolf, brush wolf, Canis latrans": "coyote", "dingo, warrigal, warragal, Canis dingo": "dingo", "dhole, Cuon alpinus": "dhole", "African hunting dog, hyena dog, Cape hunting dog, Lycaon pictus": "African wild dog", "hyena, hyaena": "hyena", "red fox, Vulpes vulpes": "red fox", "kit fox, Vulpes macrotis": "kit fox", "Arctic fox, white fox, Alopex lagopus": "Arctic fox", "grey fox, gray fox, Urocyon cinereoargenteus": "grey fox", "tabby, tabby cat": "tabby cat", "tiger cat": "tiger cat", "Persian cat": "Persian cat", "Siamese cat, Siamese": "Siamese cat", "Egyptian cat": "Egyptian Mau", "cougar, puma, catamount, mountain lion, painter, panther, Felis concolor": "cougar", "lynx, catamount": "lynx", "leopard, Panthera pardus": "leopard", "snow leopard, ounce, Panthera uncia": "snow leopard", "jaguar, panther, Panthera onca, Felis onca": "jaguar", "lion, king of beasts, Panthera leo": "lion", "tiger, Panthera tigris": "tiger", "cheetah, chetah, Acinonyx jubatus": "cheetah", "brown bear, bruin, Ursus arctos": "brown bear", "American black bear, black bear, Ursus americanus, Euarctos americanus": "American black bear", "ice bear, polar bear, Ursus Maritimus, Thalarctos maritimus": "polar bear", "sloth bear, Melursus ursinus, Ursus ursinus": "sloth bear", "mongoose": "mongoose", "meerkat, mierkat": "meerkat", "tiger beetle": "tiger beetle", "ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle": "ladybug", "ground beetle, carabid beetle": "ground beetle", "long-horned beetle, longicorn, longicorn beetle": "longhorn beetle", "leaf beetle, chrysomelid": "leaf beetle", "dung beetle": "dung beetle", "rhinoceros beetle": "rhinoceros beetle", "weevil": "weevil", "fly": "fly", "bee": "bee", "ant, emmet, pismire": "ant", "grasshopper, hopper": "grasshopper", "cricket": "cricket insect", "walking stick, walkingstick, stick insect": "stick insect", "cockroach, roach": "cockroach", "mantis, mantid": "praying mantis", "cicada, cicala": "cicada", "leafhopper": "leafhopper", "lacewing, lacewing fly": "lacewing", "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk": ( "dragonfly" ), "damselfly": "damselfly", "admiral": "red admiral butterfly", "ringlet, ringlet butterfly": "ringlet butterfly", "monarch, monarch butterfly, milkweed butterfly, Danaus plexippus": "monarch butterfly", "cabbage butterfly": "small white butterfly", "sulphur butterfly, sulfur butterfly": "sulphur butterfly", "lycaenid, lycaenid butterfly": "gossamer-winged butterfly", "starfish, sea star": "starfish", "sea urchin": "sea urchin", "sea cucumber, holothurian": "sea cucumber", "wood rabbit, cottontail, cottontail rabbit": "cottontail rabbit", "hare": "hare", "Angora, Angora rabbit": "Angora rabbit", "hamster": "hamster", "porcupine, hedgehog": "porcupine", "fox squirrel, eastern fox squirrel, Sciurus niger": "fox squirrel", "marmot": "marmot", "beaver": "beaver", "guinea pig, Cavia cobaya": "guinea pig", "sorrel": "common sorrel horse", "zebra": "zebra", "hog, pig, grunter, squealer, Sus scrofa": "pig", "wild boar, boar, Sus scrofa": "wild boar", "warthog": "warthog", "hippopotamus, hippo, river horse, Hippopotamus amphibius": "hippopotamus", "ox": "ox", "water buffalo, water ox, Asiatic buffalo, Bubalus bubalis": "water buffalo", "bison": "bison", "ram, tup": "ram (adult male sheep)", "bighorn, bighorn sheep, cimarron, Rocky Mountain bighorn, Rocky Mountain sheep, Ovis canadensis": ( "bighorn sheep" ), "ibex, Capra ibex": "Alpine ibex", "hartebeest": "hartebeest", "impala, Aepyceros melampus": "impala (antelope)", "gazelle": "gazelle", "Arabian camel, dromedary, Camelus dromedarius": "arabian camel", "llama": "llama", "weasel": "weasel", "mink": "mink", "polecat, fitch, foulmart, foumart, Mustela putorius": "European polecat", "black-footed ferret, ferret, Mustela nigripes": "black-footed ferret", "otter": "otter", "skunk, polecat, wood pussy": "skunk", "badger": "badger", "armadillo": "armadillo", "three-toed sloth, ai, Bradypus tridactylus": "three-toed sloth", "orangutan, orang, orangutang, Pongo pygmaeus": "orangutan", "gorilla, Gorilla gorilla": "gorilla", "chimpanzee, chimp, Pan troglodytes": "chimpanzee", "gibbon, Hylobates lar": "gibbon", "siamang, Hylobates syndactylus, Symphalangus syndactylus": "siamang", "guenon, guenon monkey": "guenon", "patas, hussar monkey, Erythrocebus patas": "patas monkey", "baboon": "baboon", "macaque": "macaque", "langur": "langur", "colobus, colobus monkey": "black-and-white colobus", "proboscis monkey, Nasalis larvatus": "proboscis monkey", "marmoset": "marmoset", "capuchin, ringtail, Cebus capucinus": "white-headed capuchin", "howler monkey, howler": "howler monkey", "titi, titi monkey": "titi monkey", "spider monkey, Ateles geoffroyi": "Geoffroy's spider monkey", "squirrel monkey, Saimiri sciureus": "common squirrel monkey", "Madagascar cat, ring-tailed lemur, Lemur catta": "ring-tailed lemur", "indri, indris, Indri indri, Indri brevicaudatus": "indri", "Indian elephant, Elephas maximus": "Asian elephant", "African elephant, Loxodonta africana": "African bush elephant", "lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens": "red panda", "giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca": "giant panda", "barracouta, snoek": "snoek fish", "eel": "eel", "coho, cohoe, coho salmon, blue jack, silver salmon, Oncorhynchus kisutch": "silver salmon", "rock beauty, Holocanthus tricolor": "rock beauty fish", "anemone fish": "clownfish", "sturgeon": "sturgeon", "gar, garfish, garpike, billfish, Lepisosteus osseus": "gar fish", "lionfish": "lionfish", "puffer, pufferfish, blowfish, globefish": "pufferfish", "abacus": "abacus", "abaya": "abaya", "academic gown, academic robe, judge's robe": "academic gown", "accordion, piano accordion, squeeze box": "accordion", "acoustic guitar": "acoustic guitar", "aircraft carrier, carrier, flattop, attack aircraft carrier": "aircraft carrier", "airliner": "airliner", "airship, dirigible": "airship", "altar": "altar", "ambulance": "ambulance", "amphibian, amphibious vehicle": "amphibious vehicle", "analog clock": "analog clock", "apiary, bee house": "apiary", "apron": "apron", "ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin": ( "trash can" ), "assault rifle, assault gun": "assault rifle", "backpack, back pack, knapsack, packsack, rucksack, haversack": "backpack", "bakery, bakeshop, bakehouse": "bakery", "balance beam, beam": "balance beam", "balloon": "balloon", "ballpoint, ballpoint pen, ballpen, Biro": "ballpoint pen", "Band Aid": "Band-Aid", "banjo": "banjo", "bannister, banister, balustrade, balusters, handrail": "baluster / handrail", "barbell": "barbell", "barber chair": "barber chair", "barbershop": "barbershop", "barn": "barn", "barometer": "barometer", "barrel, cask": "barrel", "barrow, garden cart, lawn cart, wheelbarrow": "wheelbarrow", "baseball": "baseball", "basketball": "basketball", "bassinet": "bassinet", "bassoon": "bassoon", "bathing cap, swimming cap": "swimming cap", "bath towel": "bath towel", "bathtub, bathing tub, bath, tub": "bathtub", "beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon": "station wagon", "beacon, lighthouse, beacon light, pharos": "lighthouse", "beaker": "beaker", "bearskin, busby, shako": "military hat (bearskin or shako)", "beer bottle": "beer bottle", "beer glass": "beer glass", "bell cote, bell cot": "bell tower", "bib": "baby bib", "bicycle-built-for-two, tandem bicycle, tandem": "tandem bicycle", "bikini, two-piece": "bikini", "binder, ring-binder": "ring binder", "binoculars, field glasses, opera glasses": "binoculars", "birdhouse": "birdhouse", "boathouse": "boathouse", "bobsled, bobsleigh, bob": "bobsleigh", "bolo tie, bolo, bola tie, bola": "bolo tie", "bonnet, poke bonnet": "poke bonnet", "bookcase": "bookcase", "bookshop, bookstore, bookstall": "bookstore", "bottlecap": "bottle cap", "bow": "hunting bow", "bow tie, bow-tie, bowtie": "bow tie", "brass, memorial tablet, plaque": "brass memorial plaque", "brassiere, bra, bandeau": "bra", "breakwater, groin, groyne, mole, bulwark, seawall, jetty": "breakwater", "breastplate, aegis, egis": "breastplate", "broom": "broom", "bucket, pail": "bucket", "buckle": "buckle", "bulletproof vest": "bulletproof vest", "bullet train, bullet": "high-speed train", "butcher shop, meat market": "butcher shop", "cab, hack, taxi, taxicab": "taxicab", "caldron, cauldron": "cauldron", "candle, taper, wax light": "candle", "cannon": "cannon", "canoe": "canoe", "can opener, tin opener": "can opener", "cardigan": "cardigan", "car mirror": "car mirror", "carousel, carrousel, merry-go-round, roundabout, whirligig": "carousel", "carpenter's kit, tool kit": "tool kit", "carton": "cardboard box / carton", "car wheel": "car wheel", "cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, ATM": ( "automated teller machine" ), "cassette": "cassette", "cassette player": "cassette player", "castle": "castle", "catamaran": "catamaran", "CD player": "CD player", "cello, violoncello": "cello", "cellular telephone, cellular phone, cellphone, cell, mobile phone": "mobile phone", "chain": "chain", "chainlink fence": "chain-link fence", "chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour": "chain mail", "chain saw, chainsaw": "chainsaw", "chest": "storage chest", "chiffonier, commode": "chiffonier", "chime, bell, gong": "bell or wind chime", "china cabinet, china closet": "china cabinet", "Christmas stocking": "Christmas stocking", "church, church building": "church", "cinema, movie theater, movie theatre, movie house, picture palace": "movie theater", "cleaver, meat cleaver, chopper": "cleaver", "cliff dwelling": "cliff dwelling", "cloak": "cloak", "clog, geta, patten, sabot": "clogs", "cocktail shaker": "cocktail shaker", "coffee mug": "coffee mug", "coffeepot": "coffeemaker", "coil, spiral, volute, whorl, helix": "spiral or coil", "combination lock": "combination lock", "computer keyboard, keypad": "computer keyboard", "confectionery, confectionary, candy store": "candy store", "container ship, containership, container vessel": "container ship", "convertible": "convertible", "corkscrew, bottle screw": "corkscrew", "cornet, horn, trumpet, trump": "cornet", "cowboy boot": "cowboy boot", "cowboy hat, ten-gallon hat": "cowboy hat", "cradle": "cradle", "crane2": "construction crane", "crash helmet": "crash helmet", "crate": "crate", "crib, cot": "infant bed", "Crock Pot": "Crock Pot", "croquet ball": "croquet ball", "crutch": "crutch", "cuirass": "cuirass", "dam, dike, dyke": "dam", "desk": "desk", "desktop computer": "desktop computer", "dial telephone, dial phone": "rotary dial telephone", "diaper, nappy, napkin": "diaper", "digital clock": "digital clock", "digital watch": "digital watch", "dining table, board": "dining table", "dishrag, dishcloth": "dishcloth", "dishwasher, dish washer, dishwashing machine": "dishwasher", "disk brake, disc brake": "disc brake", "dock, dockage, docking facility": "dock", "dogsled, dog sled, dog sleigh": "dog sled", "dome": "dome", "doormat, welcome mat": "doormat", "drilling platform, offshore rig": "drilling rig", "drum, membranophone, tympan": "drum", "drumstick": "drumstick", "dumbbell": "dumbbell", "Dutch oven": "Dutch oven", "electric fan, blower": "electric fan", "electric guitar": "electric guitar", "electric locomotive": "electric locomotive", "entertainment center": "entertainment center", "envelope": "envelope", "espresso maker": "espresso machine", "face powder": "face powder", "feather boa, boa": "feather boa", "file, file cabinet, filing cabinet": "filing cabinet", "fireboat": "fireboat", "fire engine, fire truck": "fire truck", "fire screen, fireguard": "fire screen", "flagpole, flagstaff": "flagpole", "flute, transverse flute": "flute", "folding chair": "folding chair", "football helmet": "football helmet", "forklift": "forklift", "fountain": "fountain", "fountain pen": "fountain pen", "four-poster": "four-poster bed", "freight car": "freight car", "French horn, horn": "French horn", "frying pan, frypan, skillet": "frying pan", "fur coat": "fur coat", "garbage truck, dustcart": "garbage truck", "gasmask, respirator, gas helmet": "gas mask or respirator", "gas pump, gasoline pump, petrol pump, island dispenser": "gas pump", "goblet": "goblet", "go-kart": "go-kart", "golf ball": "golf ball", "golfcart, golf cart": "golf cart", "gondola": "gondola", "gong, tam-tam": "gong", "gown": "gown", "grand piano, grand": "grand piano", "greenhouse, nursery, glasshouse": "greenhouse", "grille, radiator grille": "radiator grille", "grocery store, grocery, food market, market": "grocery store", "guillotine": "guillotine", "hair slide": "hair clip", "hair spray": "hair spray", "half track": "half-track", "hammer": "hammer", "hamper": "hamper", "hand blower, blow dryer, blow drier, hair dryer, hair drier": "hair dryer", "hand-held computer, hand-held microcomputer": "hand-held computer", "handkerchief, hankie, hanky, hankey": "handkerchief", "hard disc, hard disk, fixed disk": "hard disk drive", "harmonica, mouth organ, harp, mouth harp": "harmonica", "harp": "harp", "harvester, reaper": "combine harvester", "hatchet": "hatchet", "holster": "holster", "home theater, home theatre": "home theater", "honeycomb": "honeycomb", "hook, claw": "hook", "hoopskirt, crinoline": "hoop skirt", "horizontal bar, high bar": "gymnastic horizontal bar", "horse cart, horse-cart": "horse-drawn vehicle", "hourglass": "hourglass", "iPod": "iPod", "iron, smoothing iron": "clothes iron", "jack-o'-lantern": "carved pumpkin", "jean, blue jean, denim": "jeans", "jeep, landrover": "jeep", "jersey, T-shirt, tee shirt": "T-shirt", "jigsaw puzzle": "jigsaw puzzle", "jinrikisha, ricksha, rickshaw": "rickshaw", "joystick": "joystick", "kimono": "kimono", "knee pad": "knee pad", "knot": "knot", "lab coat, laboratory coat": "lab coat", "ladle": "ladle", "lampshade, lamp shade": "lampshade", "laptop, laptop computer": "laptop computer", "lawn mower, mower": "lawn mower", "lens cap, lens cover": "lens cap", "letter opener, paper knife, paperknife": "letter opener", "library": "library", "lifeboat": "lifeboat", "lighter, light, igniter, ignitor": "lighter", "limousine, limo": "limousine", "liner, ocean liner": "ocean liner", "lipstick, lip rouge": "lipstick", "Loafer": "slip-on shoe", "lotion": "lotion", "loudspeaker, speaker, speaker unit, loudspeaker system, speaker system": "music speaker", "loupe, jeweler's loupe": "loupe magnifying glass", "lumbermill, sawmill": "sawmill", "magnetic compass": "magnetic compass", "mailbag, postbag": "messenger bag", "mailbox, letter box": "mailbox", "maillot": "tights", "maillot, tank suit": "one-piece bathing suit", "manhole cover": "manhole cover", "maraca": "maraca", "marimba, xylophone": "marimba", "mask": "mask", "matchstick": "matchstick", "maypole": "maypole", "maze, labyrinth": "maze", "measuring cup": "measuring cup", "medicine chest, medicine cabinet": "medicine cabinet", "megalith, megalithic structure": "megalith", "microphone, mike": "microphone", "microwave, microwave oven": "microwave oven", "military uniform": "military uniform", "milk can": "milk can", "minibus": "minibus", "miniskirt, mini": "miniskirt", "minivan": "minivan", "missile": "missile", "mitten": "mitten", "mixing bowl": "mixing bowl", "mobile home, manufactured home": "mobile home", "Model T": "ford model t", "modem": "modem", "monastery": "monastery", "monitor": "monitor", "moped": "moped", "mortar": "mortar and pestle", "mortarboard": "graduation cap", "mosque": "mosque", "mosquito net": "mosquito net", "motor scooter, scooter": "vespa", "mountain bike, all-terrain bike, off-roader": "mountain bike", "mountain tent": "tent", "mouse, computer mouse": "computer mouse", "mousetrap": "mousetrap", "moving van": "moving van", "muzzle": "muzzle", "nail": "metal nail", "neck brace": "neck brace", "necklace": "necklace", "nipple": "baby pacifier", "notebook, notebook computer": "notebook computer", "obelisk": "obelisk", "oboe, hautboy, hautbois": "oboe", "ocarina, sweet potato": "ocarina", "odometer, hodometer, mileometer, milometer": "odometer", "oil filter": "oil filter", "organ, pipe organ": "pipe organ", "oscilloscope, scope, cathode-ray oscilloscope, CRO": "oscilloscope", "overskirt": "overskirt", "oxcart": "bullock cart", "oxygen mask": "oxygen mask", "packet": "product packet / packaging", "paddle, boat paddle": "paddle", "paddlewheel, paddle wheel": "paddle wheel", "padlock": "padlock", "paintbrush": "paintbrush", "pajama, pyjama, pj's, jammies": "pajamas", "palace": "palace", "panpipe, pandean pipe, syrinx": "pan flute", "paper towel": "paper towel", "parachute, chute": "parachute", "parallel bars, bars": "parallel bars", "park bench": "park bench", "parking meter": "parking meter", "passenger car, coach, carriage": "railroad car", "patio, terrace": "patio", "pay-phone, pay-station": "payphone", "pedestal, plinth, footstall": "pedestal", "pencil box, pencil case": "pencil case", "pencil sharpener": "pencil sharpener", "perfume, essence": "perfume", "Petri dish": "Petri dish", "photocopier": "photocopier", "pick, plectrum, plectron": "plectrum", "pickelhaube": "Pickelhaube", "picket fence, paling": "picket fence", "pickup, pickup truck": "pickup truck", "pier": "pier", "piggy bank, penny bank": "piggy bank", "pill bottle": "pill bottle", "pillow": "pillow", "ping-pong ball": "ping-pong ball", "pinwheel": "pinwheel", "pirate, pirate ship": "pirate ship", "pitcher, ewer": "drink pitcher", "plane, carpenter's plane, woodworking plane": "block plane", "planetarium": "planetarium", "plastic bag": "plastic bag", "plate rack": "plate rack", "plow, plough": "farm plow", "plunger, plumber's helper": "plunger", "Polaroid camera, Polaroid Land camera": "Polaroid camera", "pole": "pole", "police van, police wagon, paddy wagon, patrol wagon, wagon, black Maria": "police van", "poncho": "poncho", "pool table, billiard table, snooker table": "pool table", "pop bottle, soda bottle": "soda bottle", "pot, flowerpot": "plant pot", "potter's wheel": "potter's wheel", "power drill": "power drill", "prayer rug, prayer mat": "prayer rug", "printer": "printer", "prison, prison house": "prison", "projectile, missile": "missile", "projector": "projector", "puck, hockey puck": "hockey puck", "punching bag, punch bag, punching ball, punchball": "punching bag", "purse": "purse", "quill, quill pen": "quill", "quilt, comforter, comfort, puff": "quilt", "racer, race car, racing car": "race car", "racket, racquet": "racket", "radiator": "radiator", "radio, wireless": "radio", "radio telescope, radio reflector": "radio telescope", "rain barrel": "rain barrel", "recreational vehicle, RV, R.V.": "recreational vehicle", "reel": "fishing casting reel", "reflex camera": "reflex camera", "refrigerator, icebox": "refrigerator", "remote control, remote": "remote control", "restaurant, eating house, eating place, eatery": "restaurant", "revolver, six-gun, six-shooter": "revolver", "rifle": "rifle", "rocking chair, rocker": "rocking chair", "rotisserie": "rotisserie", "rubber eraser, rubber, pencil eraser": "eraser", "rugby ball": "rugby ball", "rule, ruler": "ruler measuring stick", "running shoe": "sneaker", "safe": "safe", "safety pin": "safety pin", "saltshaker, salt shaker": "salt shaker", "sandal": "sandal", "sarong": "sarong", "sax, saxophone": "saxophone", "scabbard": "scabbard", "scale, weighing machine": "weighing scale", "school bus": "school bus", "schooner": "schooner", "scoreboard": "scoreboard", "screen, CRT screen": "CRT monitor", "screw": "screw", "screwdriver": "screwdriver", "seat belt, seatbelt": "seat belt", "sewing machine": "sewing machine", "shield, buckler": "shield", "shoe shop, shoe-shop, shoe store": "shoe store", "shoji": "shoji screen / room divider", "shopping basket": "shopping basket", "shopping cart": "shopping cart", "shovel": "shovel", "shower cap": "shower cap", "shower curtain": "shower curtain", "ski": "ski", "ski mask": "balaclava ski mask", "sleeping bag": "sleeping bag", "slide rule, slipstick": "slide rule", "sliding door": "sliding door", "slot, one-armed bandit": "slot machine", "snorkel": "snorkel", "snowmobile": "snowmobile", "snowplow, snowplough": "snowplow", "soap dispenser": "soap dispenser", "soccer ball": "soccer ball", "sock": "sock", "solar dish, solar collector, solar furnace": "solar thermal collector", "sombrero": "sombrero", "soup bowl": "soup bowl", "space bar": "keyboard space bar", "space heater": "space heater", "space shuttle": "space shuttle", "spatula": "spatula", "speedboat": "motorboat", "spider web, spider's web": "spider web", "spindle": "spindle", "sports car, sport car": "sports car", "spotlight, spot": "spotlight", "stage": "stage", "steam locomotive": "steam locomotive", "steel arch bridge": "through arch bridge", "steel drum": "steel drum", "stethoscope": "stethoscope", "stole": "scarf", "stone wall": "stone wall", "stopwatch, stop watch": "stopwatch", "stove": "stove", "strainer": "strainer", "streetcar, tram, tramcar, trolley, trolley car": "tram", "stretcher": "stretcher", "studio couch, day bed": "couch", "stupa, tope": "stupa", "submarine, pigboat, sub, U-boat": "submarine", "suit, suit of clothes": "suit", "sundial": "sundial", "sunglass": "sunglasses", "sunglasses, dark glasses, shades": "sunglasses", "sunscreen, sunblock, sun blocker": "sunscreen", "suspension bridge": "suspension bridge", "swab, swob, mop": "mop", "sweatshirt": "sweatshirt", "swimming trunks, bathing trunks": "swim trunks / shorts", "swing": "swing", "switch, electric switch, electrical switch": "electrical switch", "syringe": "syringe", "table lamp": "table lamp", "tank, army tank, armored combat vehicle, armoured combat vehicle": "tank", "tape player": "tape player", "teapot": "teapot", "teddy, teddy bear": "teddy bear", "television, television system": "television", "tennis ball": "tennis ball", "thatch, thatched roof": "thatched roof", "theater curtain, theatre curtain": "front curtain", "thimble": "thimble", "thresher, thrasher, threshing machine": "threshing machine", "throne": "throne", "tile roof": "tile roof", "toaster": "toaster", "tobacco shop, tobacconist shop, tobacconist": "tobacco shop", "toilet seat": "toilet seat", "torch": "torch", "totem pole": "totem pole", "tow truck, tow car, wrecker": "tow truck", "toyshop": "toy store", "tractor": "tractor", "trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi": "semi-trailer truck", "tray": "tray", "trench coat": "trench coat", "tricycle, trike, velocipede": "tricycle", "trimaran": "trimaran", "tripod": "tripod", "triumphal arch": "triumphal arch", "trolleybus, trolley coach, trackless trolley": "trolleybus", "trombone": "trombone", "tub, vat": "hot tub", "turnstile": "turnstile", "typewriter keyboard": "typewriter keyboard", "umbrella": "umbrella", "unicycle, monocycle": "unicycle", "upright, upright piano": "upright piano", "vacuum, vacuum cleaner": "vacuum cleaner", "vase": "vase", "vault": "vaulted or arched ceiling", "velvet": "velvet fabric", "vending machine": "vending machine", "vestment": "vestment", "viaduct": "viaduct", "violin, fiddle": "violin", "volleyball": "volleyball", "waffle iron": "waffle iron", "wall clock": "wall clock", "wallet, billfold, notecase, pocketbook": "wallet", "wardrobe, closet, press": "wardrobe", "warplane, military plane": "military aircraft", "washbasin, handbasin, washbowl, lavabo, wash-hand basin": "sink", "washer, automatic washer, washing machine": "washing machine", "water bottle": "water bottle", "water jug": "water jug", "water tower": "water tower", "whiskey jug": "whiskey jug", "whistle": "whistle", "wig": "hair wig", "window screen": "window screen", "window shade": "window shade", "Windsor tie": "Windsor tie", "wine bottle": "wine bottle", "wing": "airplane wing", "wok": "wok", "wooden spoon": "wooden spoon", "wool, woolen, woollen": "wool", "worm fence, snake fence, snake-rail fence, Virginia fence": "split-rail fence", "wreck": "shipwreck", "yawl": "sailboat", "yurt": "yurt", "web site, website, internet site, site": "website", "comic book": "comic book", "crossword puzzle, crossword": "crossword", "street sign": "traffic or street sign", "traffic light, traffic signal, stoplight": "traffic light", "book jacket, dust cover, dust jacket, dust wrapper": "dust jacket", "menu": "menu", "plate": "plate", "guacamole": "guacamole", "consomme": "consomme", "hot pot, hotpot": "hot pot", "trifle": "trifle", "ice cream, icecream": "ice cream", "ice lolly, lolly, lollipop, popsicle": "popsicle", "French loaf": "baguette", "bagel, beigel": "bagel", "pretzel": "pretzel", "cheeseburger": "cheeseburger", "hotdog, hot dog, red hot": "hot dog", "mashed potato": "mashed potatoes", "head cabbage": "cabbage", "broccoli": "broccoli", "cauliflower": "cauliflower", "zucchini, courgette": "zucchini", "spaghetti squash": "spaghetti squash", "acorn squash": "acorn squash", "butternut squash": "butternut squash", "cucumber, cuke": "cucumber", "artichoke, globe artichoke": "artichoke", "bell pepper": "bell pepper", "cardoon": "cardoon", "mushroom": "mushroom", "Granny Smith": "Granny Smith apple", "strawberry": "strawberry", "orange": "orange", "lemon": "lemon", "fig": "fig", "pineapple, ananas": "pineapple", "banana": "banana", "jackfruit, jak, jack": "jackfruit", "custard apple": "cherimoya (custard apple)", "pomegranate": "pomegranate", "hay": "hay", "carbonara": "carbonara", "chocolate sauce, chocolate syrup": "chocolate syrup", "dough": "dough", "meat loaf, meatloaf": "meatloaf", "pizza, pizza pie": "pizza", "potpie": "pot pie", "burrito": "burrito", "red wine": "red wine", "espresso": "espresso", "cup": "tea cup", "eggnog": "eggnog", "alp": "mountain", "bubble": "bubble", "cliff, drop, drop-off": "cliff", "coral reef": "coral reef", "geyser": "geyser", "lakeside, lakeshore": "lakeshore", "promontory, headland, head, foreland": "promontory", "sandbar, sand bar": "sandbar", "seashore, coast, seacoast, sea-coast": "beach", "valley, vale": "valley", "volcano": "volcano", "ballplayer, baseball player": "baseball player", "groom, bridegroom": "bridegroom", "scuba diver": "scuba diver", "rapeseed": "rapeseed", "daisy": "daisy", "yellow lady's slipper, yellow lady-slipper, Cypripedium calceolus, Cypripedium parviflorum": ( "yellow lady's slipper" ), "corn": "corn", "acorn": "acorn", "hip, rose hip, rosehip": "rose hip", "buckeye, horse chestnut, conker": "horse chestnut seed", "coral fungus": "coral fungus", "agaric": "agaric", "gyromitra": "gyromitra", "stinkhorn, carrion fungus": "stinkhorn mushroom", "earthstar": "earth star fungus", "hen-of-the-woods, hen of the woods, Polyporus frondosus, Grifola frondosa": "hen of the woods mushroom", "bolete": "bolete", "ear, spike, capitulum": "corn cob", "toilet tissue, toilet paper, bathroom tissue": "toilet paper", } prompt_templates_dict = { 0: { "prefix": None, "example": "<image>a photo of a {class_name}.", }, } prompt_templates_dict_instruct = { 0: { "prefix": "{bos_token}", "example": ( "User:<image>What is represented in this" " image?<end_of_utterance>\nAssistant: This is a photo of a {class_name}.<end_of_utterance>\n" ), }, } selected_prompt_template_id = 0 class ImageNet1kNewSplits1kSupportVMistralClassificationInContextAccWithKLAndEntropy( ImageNet1kVMistralClassificationInContextAccWithKLAndEntropy ): dataset_name: str = "HuggingFaceM4/imagenet1k_support_1k_query_sets" default_query_split_name: str = "validation_query_set" default_support_split_name: str = "validation_support_set" validation_query_split_name: str = "validation_query_set" validation_support_split_name: str = "validation_support_set" test_query_split_name: str = "test_query_set" test_support_split_name: str = "test_support_set" selected_prompt_template_id = 0 class ImageNet1kPart0NewSplits1kSupportVMistralClassificationInContextAccWithKLAndEntropy( ImageNet1kNewSplits1kSupportVMistralClassificationInContextAccWithKLAndEntropy ): dataset_name: str = "HuggingFaceM4/imagenet1k_support_1k_query_sets_part_0" class ImageNet1kPart1NewSplits1kSupportVMistralClassificationInContextAccWithKLAndEntropy( ImageNet1kNewSplits1kSupportVMistralClassificationInContextAccWithKLAndEntropy ): dataset_name: str = "HuggingFaceM4/imagenet1k_support_1k_query_sets_part_1" class ImageNet1kPart2NewSplits1kSupportVMistralClassificationInContextAccWithKLAndEntropy( ImageNet1kNewSplits1kSupportVMistralClassificationInContextAccWithKLAndEntropy ): dataset_name: str = "HuggingFaceM4/imagenet1k_support_1k_query_sets_part_2" class ImageNet1kPart3NewSplits1kSupportVMistralClassificationInContextAccWithKLAndEntropy( ImageNet1kNewSplits1kSupportVMistralClassificationInContextAccWithKLAndEntropy ): dataset_name: str = "HuggingFaceM4/imagenet1k_support_1k_query_sets_part_3" class ImageNet1kPart4NewSplits1kSupportVMistralClassificationInContextAccWithKLAndEntropy( ImageNet1kNewSplits1kSupportVMistralClassificationInContextAccWithKLAndEntropy ): dataset_name: str = "HuggingFaceM4/imagenet1k_support_1k_query_sets_part_4" class ImageNet1kPart5NewSplits1kSupportVMistralClassificationInContextAccWithKLAndEntropy( ImageNet1kNewSplits1kSupportVMistralClassificationInContextAccWithKLAndEntropy ): dataset_name: str = "HuggingFaceM4/imagenet1k_support_1k_query_sets_part_5" class ImageNet1kNewSplits5kSupportVMistralClassificationInContextAccWithKLAndEntropy( ImageNet1kVMistralClassificationInContextAccWithKLAndEntropy ): dataset_name: str = "HuggingFaceM4/imagenet1k_support_5k_query_sets" default_query_split_name: str = "validation_query_set" default_support_split_name: str = "validation_support_set" validation_query_split_name: str = "validation_query_set" validation_support_split_name: str = "validation_support_set" test_query_split_name: str = "test_query_set" test_support_split_name: str = "test_support_set" selected_prompt_template_id = 0 class ImageNet1kPart0NewSplits5kSupportVMistralClassificationInContextAccWithKLAndEntropy( ImageNet1kNewSplits5kSupportVMistralClassificationInContextAccWithKLAndEntropy ): dataset_name: str = "HuggingFaceM4/imagenet1k_support_5k_query_sets_part_0" class ImageNet1kPart1NewSplits5kSupportVMistralClassificationInContextAccWithKLAndEntropy( ImageNet1kNewSplits5kSupportVMistralClassificationInContextAccWithKLAndEntropy ): dataset_name: str = "HuggingFaceM4/imagenet1k_support_5k_query_sets_part_1" class ImageNet1kPart2NewSplits5kSupportVMistralClassificationInContextAccWithKLAndEntropy( ImageNet1kNewSplits5kSupportVMistralClassificationInContextAccWithKLAndEntropy ): dataset_name: str = "HuggingFaceM4/imagenet1k_support_5k_query_sets_part_2" class ImageNet1kPart3NewSplits5kSupportVMistralClassificationInContextAccWithKLAndEntropy( ImageNet1kNewSplits5kSupportVMistralClassificationInContextAccWithKLAndEntropy ): dataset_name: str = "HuggingFaceM4/imagenet1k_support_5k_query_sets_part_3" class ImageNet1kPart4NewSplits5kSupportVMistralClassificationInContextAccWithKLAndEntropy( ImageNet1kNewSplits5kSupportVMistralClassificationInContextAccWithKLAndEntropy ): dataset_name: str = "HuggingFaceM4/imagenet1k_support_5k_query_sets_part_4" class ImageNet1kPart5NewSplits5kSupportVMistralClassificationInContextAccWithKLAndEntropy( ImageNet1kNewSplits5kSupportVMistralClassificationInContextAccWithKLAndEntropy ): dataset_name: str = "HuggingFaceM4/imagenet1k_support_5k_query_sets_part_5" class ImageNet1kSampleVMistralClassificationInContextAccWithKLAndEntropy( ImageNet1kVMistralClassificationInContextAccWithKLAndEntropy ): dataset_name: str = "HuggingFaceM4/imagenet-1k-Sample" class HatefulMemesVMistralClassificationInContextAccWithKLAndEntropyROCAUC(VMistralClassificationInContext): dataset_name: str = "HuggingFaceM4/Hateful-Memes" dataset_config: str = "seen" metric_name: str = "UnfoldedClassificationMetrics" metric_kwargs = { "metrics": [ ClassifMetrics.ACCURACY, ClassifMetrics.KL_DISTRIBUTION, ClassifMetrics.KL_MEAN, ClassifMetrics.ENTROPY_DISTRIBUTION, ClassifMetrics.ENTROPY_MEAN, ClassifMetrics.ROC_AUC, ] } default_query_split_name: str = "test" default_support_split_name: str = "train" label_column_name: str = "label" image_column_names: List[str] = ["image"] context_column_names: List[str] = ["text"] length_normalize: bool = False mapping_class_prompt_name_id_to_prompt_template_id: dict = { 0: [0, 1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 17, 18, 20, 21, 22, 23, 24, 25], 1: [7, 8, 15, 16, 19, 26, 27], } mapping_class_names_to_prompt_names: dict = { 0: {"not-hateful": "no", "hateful": "yes"}, 1: {"not-hateful": "not hateful", "hateful": "hateful"}, } prompt_templates_dict = { 0: { "prefix": None, "example": '<image>is an image with written: "{text}". Is it hateful? Answer: {class_name}', }, 1: { "prefix": "{bos_token}", "example": ( '<image> The text:"{text}" is written on this meme. Is this meme hateful? Answer:{class_name}\n' ), }, 2: { "prefix": "{bos_token}", "example": '<image>is an image with written "{text}" on it. Is it hateful? Answer: {class_name}\n', }, 3: { "prefix": ( "{bos_token}It's a conversation between a human, the user, and an intelligent visual AI, Bot. The user" " sends memes with text written on them, and Bot has to say whether the meme is hateful or not." ), "example": '<image>is an image with written "{text}" on it. Is it hateful? Answer: {class_name}\n', }, 4: { "prefix": ( "{bos_token}You are an intelligent virtual assistant that has to determine whether the meme given as" " input, along with a transcription of the text marked on it, is hateful (yes) or not (no)." ), "example": 'Input:<image> Transcription: "{text}" Answer: {class_name}\n', }, 5: { "prefix": ( "{bos_token}Classify the following memes. Answer yes if they are hateful and no if they are not.\n" ), "example": 'Input:<image> Transcription: "{text}" Answer: {class_name}\n', }, 6: { "prefix": ( "{bos_token}Analyze the given meme and determine if it falls under the category of hate speech (yes)" " or not (no).\n" ), "example": 'Input:<image> Transcription: "{text}" Answer: {class_name}\n', }, 7: { "prefix": ( "{bos_token}Analyze the given meme and determine if it falls under the category of hateful or not.\n" ), "example": 'Input:<image> Transcription: "{text}" Answer: {class_name}\n', }, 8: { "prefix": ( "{bos_token}Analyze the given meme and determine if it falls under the category of hateful or not." " Both the image and the text written on it matters for the prediction.\n" ), "example": 'Input:<image> Transcription: "{text}" Answer: {class_name}\n', }, 9: { "prefix": "{bos_token}", "example": '<image> The text:"{text}" is written on this meme. Is this meme hateful? Answer:{class_name}', }, 10: { "prefix": "{bos_token}", "example": '<image>is an image with written "{text}" on it. Is it hateful? Answer: {class_name}', }, 11: { "prefix": ( "{bos_token}It's a conversation between a human, the user, and an intelligent visual AI, Bot. The user" " sends memes with text written on them, and Bot has to say whether the meme is hateful or not." ), "example": '<image>is an image with written "{text}" on it. Is it hateful? Answer: {class_name}', }, 12: { "prefix": ( "{bos_token}You are an intelligent virtual assistant that has to determine whether the meme given as" " input, along with a transcription of the text marked on it, is hateful (yes) or not (no)." ), "example": 'Input:<image> Transcription: "{text}" Answer: {class_name}', }, 13: { "prefix": ( "{bos_token}Classify the following memes. Answer yes if they are hateful and no if they are not." ), "example": 'Input:<image> Transcription: "{text}" Answer: {class_name}', }, 14: { "prefix": ( "{bos_token}Analyze the given meme and determine if it falls under the category of hate speech (yes)" " or not (no)." ), "example": 'Input:<image> Transcription: "{text}" Answer: {class_name}', }, 15: { "prefix": ( "{bos_token}Analyze the given meme and determine if it falls under the category of hateful or not." ), "example": 'Input:<image> Transcription: "{text}" Answer: {class_name}', }, 16: { "prefix": ( "{bos_token}Analyze the given meme and determine if it falls under the category of hateful or not." " Both the image and the text written on it matters for the prediction." ), "example": 'Input:<image> Transcription: "{text}" Answer: {class_name}', }, 17: { "prefix": ( "{bos_token}It's a conversation between a human, the user, and an intelligent visual AI, Bot. The user" " sends pictures with text written on them, and Bot has to say whether this is is hateful or not." ), "example": '<image>is an image with written "{text}" on it. Is it hateful? Answer: {class_name}.', }, 18: { "prefix": ( "{bos_token}It's a conversation between a human, the user, and an intelligent visual AI, Bot. The user" " sends pictures with text written on them, and Bot has to say whether this is is hateful or not.\n" ), "example": '<image>is an image with written "{text}" on it. Is it hateful? Answer: {class_name}.', }, 19: { "prefix": ( "{bos_token}Analyze the given meme and determine if it falls under the category of hateful or not." ), "example": 'Input:<image> Transcription: "{text}" Answer: {class_name}.', }, 20: { "prefix": None, "example": ( '{bos_token}<image>is an image with written: "{text}". Is it hateful? Answer: {class_name}.{eos_token}' ), }, 21: { "prefix": "{bos_token}", "example": '<image>is an image with written: "{text}". Is it hateful? Answer: {class_name}', }, 22: { "prefix": ( "It's a conversation between a human, the user, and an intelligent visual AI, Bot. The user" " sends memes with text written on them, and Bot has to say whether the meme is hateful or not." ), "example": '<image>is an image with written "{text}" on it. Is it hateful? Answer: {class_name}', }, 23: { "prefix": ( "You are an intelligent virtual assistant that has to determine whether the meme given as" " input, along with a transcription of the text marked on it, is hateful (yes) or not (no)." ), "example": 'Input:<image> Transcription: "{text}" Answer: {class_name}', }, 24: { "prefix": "Classify the following memes. Answer yes if they are hateful and no if they are not.", "example": 'Input:<image> Transcription: "{text}" Answer: {class_name}', }, 25: { "prefix": ( "Analyze the given meme and determine if it falls under the category of hate speech (yes) or not (no)." ), "example": 'Input:<image> Transcription: "{text}" Answer: {class_name}', }, 26: { "prefix": "Analyze the given meme and determine if it falls under the category of hateful or not.", "example": 'Input:<image> Transcription: "{text}" Answer: {class_name}', }, 27: { "prefix": ( "Analyze the given meme and determine if it falls under the category of hateful or not." " Both the image and the text written on it matters for the prediction." ), "example": 'Input:<image> Transcription: "{text}" Answer: {class_name}', }, } prompt_templates_dict_instruct = { 22: { "prefix": ( "{bos_token}The user sends memes with text written on them, and the assistant has to say whether the" " meme is hateful or not.\n" ), "example": ( 'User:<image>is an image with written "{text}" on it. Is' " it hateful?<end_of_utterance>\nAssistant: {class_name}.<end_of_utterance>\n" ), }, } selected_prompt_template_id = 22 class HatefulMemesNewSplitsVMistralClassificationInContextAccWithKLAndEntropyROCAUC( HatefulMemesVMistralClassificationInContextAccWithKLAndEntropyROCAUC ): dataset_name: str = "HuggingFaceM4/HatefulMemes_support_query_sets" default_query_split_name: str = "validation_query_set" default_support_split_name: str = "validation_support_set" validation_query_split_name: str = "validation_query_set" validation_support_split_name: str = "validation_support_set" test_query_split_name: str = "test_query_set" test_support_split_name: str = "test_support_set" class ClevrVMistralClassificationInContextAccWithKLAndEntropy(VMistralClassificationInContext): dataset_name: str = "HuggingFaceM4/clevr" dataset_config: str = "classification" metric_name: str = "UnfoldedClassificationMetrics" metric_kwargs = { "metrics": [ ClassifMetrics.ACCURACY, ClassifMetrics.KL_MEAN, ClassifMetrics.ENTROPY_MEAN, ] } default_query_split_name: str = "validation" default_support_split_name: str = "train" label_column_name: str = "answer" image_column_names: List[str] = ["image"] context_column_names: List[str] = ["question"] length_normalize: bool = False prompt_templates_dict = { 0: { "prefix": None, "example": "<image>Question: {question} Answer: {class_name}", }, } class ClevrSampleVMistralClassificationInContextAccWithKLAndEntropy( ClevrVMistralClassificationInContextAccWithKLAndEntropy ): dataset_name: str = "HuggingFaceM4/clevr-Sample" class ClevrNewSplitsVMistralClassificationInContextAccWithKLAndEntropy(VMistralClassificationInContext): dataset_name: str = "HuggingFaceM4/Clevr_support_query_sets" default_query_split_name: str = "validation_query_set" default_support_split_name: str = "validation_support_set" validation_query_split_name: str = "validation_query_set" validation_support_split_name: str = "validation_support_set" test_query_split_name: str = "test_query_set" test_support_split_name: str = "test_support_set" metric_name: str = "UnfoldedClassificationMetrics" metric_kwargs = { "metrics": [ ClassifMetrics.ACCURACY, ClassifMetrics.KL_MEAN, ClassifMetrics.ENTROPY_MEAN, ClassifMetrics.DEFAULT_TO_SERVER_RESULTS, ] } label_column_name: str = "answer" image_column_names: List[str] = ["image"] context_column_names: List[str] = ["question"] length_normalize: bool = False prompt_templates_dict = { 0: { "prefix": None, "example": "<image>Question: {question} Answer: {class_name}", }, 1: { "prefix": None, "example": "<image>Question: {question}\nAnswer: {class_name}", }, 2: { "prefix": None, "example": "<image>{question}\nAnswer: {class_name}", }, 3: { "prefix": None, "example": "<image>{question}\nAnswer: {class_name}.", }, 4: { "prefix": None, "example": "<image>\nQuestion: {question}\nAnswer: {class_name}", }, 5: { "prefix": None, "example": ( "Looking closely at each of the objects in the following" " image:\n<image>\nAnswer the following question:" " {question}\nAnswer: {class_name}" ), }, 6: { "prefix": ( "The following is a series of questions and answers related to the different objects in the associated" " image.\n" ), "example": "<image>Question: {question}\nAnswer: {class_name}", }, 7: { "prefix": None, "example": "<image>{question}\nAnswer: {class_name}.\n", }, 8: { "prefix": None, "example": "<image>\nQuestion: {question}\nAnswer: {class_name}\n", }, } prompt_templates_dict_instruct = { 3: { "prefix": "The user asks a question and the assistant uses the image to answer.\n", "example": "User:<image>{question}<end_of_utterance>\nAssistant: {class_name}.<end_of_utterance>\n", }, } selected_prompt_template_id = 3 class ClevrChatbotVMistralClassificationInContextAccWithKLAndEntropy( ClevrNewSplitsVMistralClassificationInContextAccWithKLAndEntropy ): prompt_templates_dict = { 0: { "prefix": "{bos_token}", "example": ( "User:<image>Question:" " {question}\nGive a very brief answer.<end_of_utterance>\nAssistant: {class_name}<end_of_utterance>\n" ), }, } selected_prompt_template_id = 0 class SNLIVEImageOnlySampleVMistralClassificationInContextAccWithKLAndEntropy(VMistralClassificationInContext): dataset_name: str = "HuggingFaceM4/SNLI-VE-Sample" metric_name: str = "UnfoldedClassificationMetrics" metric_kwargs = { "metrics": [ ClassifMetrics.MEAN_PER_CLASS_ACCURACY, ClassifMetrics.KL_DISTRIBUTION, ClassifMetrics.KL_MEAN, ClassifMetrics.ENTROPY_DISTRIBUTION, ClassifMetrics.ENTROPY_MEAN, ] } default_query_split_name: str = "test" default_support_split_name: str = "train" label_column_name: str = "label" image_column_names: List[str] = ["image"] context_column_names: List[str] = ["hypothesis"] length_normalize: bool = False mapping_class_names_to_prompt_names: dict = { "entailment": "correct", "neutral": "inconclusive", "contradiction": "incorrect", } prompt_templates_dict = { 0: { "prefix": None, "example": ( "<image>Using only the preceding image, and what you" " know about the world, {hypothesis} is definitely correct, incorrect, or inconclusive? Answer:" " {class_name}." ), }, } class SNLIVEImagePremiseSampleVMistralClassificationInContextAccWithKLAndEntropy(VMistralClassificationInContext): dataset_name: str = "HuggingFaceM4/SNLI-VE_modif_premise_hypothesis-Sample" metric_name: str = "UnfoldedClassificationMetrics" metric_kwargs = { "metrics": [ ClassifMetrics.MEAN_PER_CLASS_ACCURACY, ClassifMetrics.KL_DISTRIBUTION, ClassifMetrics.KL_MEAN, ClassifMetrics.ENTROPY_DISTRIBUTION, ClassifMetrics.ENTROPY_MEAN, ] } # The dataset has been modified so the column context of the dataset is constructed as follows: # f"{premise} Using only the image, the preceding description, and what you know about the world, \"{hypothesis}\"" default_query_split_name: str = "test" default_support_split_name: str = "train" label_column_name: str = "label" image_column_names: List[str] = ["image"] context_column_names: List[str] = ["context"] length_normalize: bool = False mapping_class_names_to_prompt_names: dict = { "entailment": "correct", "neutral": "inconclusive", "contradiction": "incorrect", } prompt_templates_dict = { 0: { "prefix": None, "example": ( "<image>Using only the preceding image, and what you" " know about the world, {context} is definitely correct, incorrect, or inconclusive? Answer:" " {class_name}." ), }, } class FairFaceAgeVMistralClassificationInContextAccWithKLAndEntropy(VMistralClassificationInContext): dataset_name: str = "HuggingFaceM4/FairFace" metric_name: str = "UnfoldedClassificationMetrics" metric_kwargs = { "metrics": [ ClassifMetrics.ACCURACY, ClassifMetrics.KL_DISTRIBUTION, ClassifMetrics.KL_MEAN, ClassifMetrics.ENTROPY_DISTRIBUTION, ClassifMetrics.ENTROPY_MEAN, ClassifMetrics.PER_BUCKET_ACCURACY, ] } default_query_split_name: str = "validation" default_support_split_name: str = "train" label_column_name: str = "age" image_column_names: List[str] = ["image"] length_normalize: bool = False mapping_class_names_to_prompt_names: dict = { "0-2": "between and 0 and 2 years old", "3-9": "between and 3 and 9 years old", "10-19": "between and 10 and 19 years old", "20-29": "between and 20 and 29 years old", "30-39": "between and 30 and 39 years old", "40-49": "between and 40 and 49 years old", "50-59": "between and 50 and 59 years old", "60-69": "between and 60 and 69 years old", "more than 70": "more than 70 years old", } buckets_keys: List = ["gender", "race"] prompt_templates_dict = { 0: { "prefix": None, "example": "<image>a photo of a person {class_name}.", }, } class FairFaceAgeSampleVMistralClassificationInContextAccWithKLAndEntropy( FairFaceAgeVMistralClassificationInContextAccWithKLAndEntropy ): dataset_name: str = "HuggingFaceM4/FairFace-Sample" class FairFaceAgeNewSplitsVMistralClassificationInContextAccWithKLAndEntropy(VMistralClassificationInContext): dataset_name: str = "HuggingFaceM4/FairFace_support_query_sets" default_query_split_name: str = "validation_query_set" default_support_split_name: str = "validation_support_set" validation_query_split_name: str = "validation_query_set" validation_support_split_name: str = "validation_support_set" test_query_split_name: str = "test_query_set" test_support_split_name: str = "test_support_set" metric_name: str = "UnfoldedClassificationMetrics" metric_kwargs = { "metrics": [ ClassifMetrics.ACCURACY, ClassifMetrics.KL_MEAN, ClassifMetrics.ENTROPY_MEAN, ClassifMetrics.PER_BUCKET_ACCURACY, ] } label_column_name: str = "age" image_column_names: List[str] = ["image"] length_normalize: bool = False mapping_class_names_to_prompt_names: dict = { "0-2": "between 0 and 2 years old", "3-9": "between 3 and 9 years old", "10-19": "between 10 and 19 years old", "20-29": "between 20 and 29 years old", "30-39": "between 30 and 39 years old", "40-49": "between 40 and 49 years old", "50-59": "between 50 and 59 years old", "60-69": "between 60 and 69 years old", "more than 70": "more than 70 years old", } buckets_keys: List = ["gender", "race"] prompt_templates_dict = { 0: { "prefix": None, "example": "<image>a photo of a person {class_name}.", }, 1: { "prefix": "{bos_token}Task: Give the age of the person in the picture.\n", "example": "<image>{class_name}\n", }, 2: { "prefix": "{bos_token}Instruction: Give the age of the person in the picture.\n", "example": "<image>A photo of a {class_name} person.\n", }, 3: { "prefix": "{bos_token}Instruction: Find the age of people in the pictures.\n", "example": "<image>The age is {class_name}.\n", }, 4: { "prefix": "{bos_token}Task: Find the age of people in the pictures.\n", "example": "<image>Age: {class_name}.\n", }, 5: { "prefix": "{bos_token}Task: Find the age of people in the pictures.\n", "example": "<image>Age: {class_name}.", }, } prompt_templates_dict_instruct = { 5: { "prefix": "{bos_token}The user shows a picture of a person, and the assistant must find their age.\n", "example": ( "User:<image>How old is the person in the" " picture?<end_of_utterance>\nAssistant: The person is {class_name}.<end_of_utterance>\n" ), }, } selected_prompt_template_id = 5 bool_instruct_templates = True class FairFaceGenderVMistralClassificationInContextAccWithKLAndEntropy(VMistralClassificationInContext): dataset_name: str = "HuggingFaceM4/FairFace" metric_name: str = "UnfoldedClassificationMetrics" metric_kwargs = { "metrics": [ ClassifMetrics.ACCURACY, ClassifMetrics.KL_DISTRIBUTION, ClassifMetrics.KL_MEAN, ClassifMetrics.ENTROPY_DISTRIBUTION, ClassifMetrics.ENTROPY_MEAN, ClassifMetrics.PER_BUCKET_ACCURACY, ] } default_query_split_name: str = "validation" default_support_split_name: str = "train" label_column_name: str = "gender" image_column_names: List[str] = ["image"] length_normalize: bool = False mapping_class_names_to_prompt_names: dict = { "Male": "male", "Female": "female", } buckets_keys: List = ["gender", "race"] prompt_templates_dict = { 0: { "prefix": None, "example": "<image>a photo of a {class_name} person.", }, } class FairFaceGenderSampleVMistralClassificationInContextAccWithKLAndEntropy( FairFaceGenderVMistralClassificationInContextAccWithKLAndEntropy ): dataset_name: str = "HuggingFaceM4/FairFace-Sample" class FairFaceGenderNewSplitsVMistralClassificationInContextAccWithKLAndEntropy(VMistralClassificationInContext): dataset_name: str = "HuggingFaceM4/FairFace_support_query_sets" default_query_split_name: str = "validation_query_set" default_support_split_name: str = "validation_support_set" validation_query_split_name: str = "validation_query_set" validation_support_split_name: str = "validation_support_set" test_query_split_name: str = "test_query_set" test_support_split_name: str = "test_support_set" metric_name: str = "UnfoldedClassificationMetrics" metric_kwargs = { "metrics": [ ClassifMetrics.ACCURACY, ClassifMetrics.KL_MEAN, ClassifMetrics.ENTROPY_MEAN, ClassifMetrics.PER_BUCKET_ACCURACY, ] } label_column_name: str = "gender" image_column_names: List[str] = ["image"] length_normalize: bool = False mapping_class_names_to_prompt_names: dict = { "Male": "male", "Female": "female", } buckets_keys: List = ["gender", "race"] prompt_templates_dict = { 0: { "prefix": None, "example": "<image>a photo of a {class_name} person.", }, 1: { "prefix": "{bos_token}Task: Give the gender of the person in the picture.\n", "example": "<image>{class_name}\n", }, 2: { "prefix": "{bos_token}Instruction: Give the gender of the person in the picture.\n", "example": "<image>A photo of a {class_name} person.\n", }, 3: { "prefix": "{bos_token}Instruction: Find the gender of people in the pictures.\n", "example": "<image>The gender is {class_name}.\n", }, 4: { "prefix": "{bos_token}Task: Find the gender of people in the pictures.\n", "example": "<image>Gender: {class_name}.\n", }, 5: { "prefix": "{bos_token}Task: Find the gender of people in the pictures.\n", "example": "<image>Gender: {class_name}. ", }, } prompt_templates_dict_instruct = { 0: { "prefix": "{bos_token}The user shows the picture of a person, and the assistant must find their gender.\n", "example": ( "User:<image>What is this person's" " gender?<end_of_utterance>\nAssistant: This person is a {class_name}.<end_of_utterance>\n" ), }, } selected_prompt_template_id = 0 bool_instruct_templates = True class FairFaceRaceVMistralClassificationInContextAccWithKLAndEntropy(VMistralClassificationInContext): dataset_name: str = "HuggingFaceM4/FairFace" metric_name: str = "UnfoldedClassificationMetrics" metric_kwargs = { "metrics": [ ClassifMetrics.ACCURACY, ClassifMetrics.KL_DISTRIBUTION, ClassifMetrics.KL_MEAN, ClassifMetrics.ENTROPY_DISTRIBUTION, ClassifMetrics.ENTROPY_MEAN, ClassifMetrics.PER_BUCKET_ACCURACY, ] } default_query_split_name: str = "validation" default_support_split_name: str = "train" label_column_name: str = "race" image_column_names: List[str] = ["image"] length_normalize: bool = False mapping_class_names_to_prompt_names: dict = { "East Asian": "east asian", "Indian": "indian", "Black": "black", "White": "white", "Middle Eastern": "middle eastern", "Latino_Hispanic": "latino or hispanic", "Southeast Asian": "southeast asian", } buckets_keys: List = ["gender", "race"] prompt_templates_dict = { 0: { "prefix": None, "example": "<image>a photo of a {class_name} person.", }, } class FairFaceRaceSampleVMistralClassificationInContextAccWithKLAndEntropy( FairFaceRaceVMistralClassificationInContextAccWithKLAndEntropy ): dataset_name: str = "HuggingFaceM4/FairFace-Sample" class FairFaceRaceNewSplitsVMistralClassificationInContextAccWithKLAndEntropy(VMistralClassificationInContext): dataset_name: str = "HuggingFaceM4/FairFace_support_query_sets" default_query_split_name: str = "validation_query_set" default_support_split_name: str = "validation_support_set" validation_query_split_name: str = "validation_query_set" validation_support_split_name: str = "validation_support_set" test_query_split_name: str = "test_query_set" test_support_split_name: str = "test_support_set" metric_name: str = "UnfoldedClassificationMetrics" metric_kwargs = { "metrics": [ ClassifMetrics.ACCURACY, ClassifMetrics.KL_MEAN, ClassifMetrics.ENTROPY_MEAN, ClassifMetrics.PER_BUCKET_ACCURACY, ] } label_column_name: str = "race" image_column_names: List[str] = ["image"] length_normalize: bool = False mapping_class_names_to_prompt_names: dict = { "East Asian": "east asian", "Indian": "indian", "Black": "black", "White": "white", "Middle Eastern": "middle eastern", "Latino_Hispanic": "latino or hispanic", "Southeast Asian": "southeast asian", } buckets_keys: List = ["gender", "race"] prompt_templates_dict = { 0: { "prefix": None, "example": "<image>a photo of a {class_name} person.", }, 1: { "prefix": "{bos_token}Task: Give the race of the person in the picture.\n", "example": "<image>{class_name}\n", }, 2: { "prefix": "{bos_token}Instruction: Give the race of the person in the picture.\n", "example": "<image>A photo of a {class_name} person.\n", }, 3: { "prefix": "{bos_token}Instruction: Find the race of people in the pictures.\n", "example": "<image>The race is {class_name}.\n", }, 4: { "prefix": "{bos_token}Task: Find the race of people in the pictures.\n", "example": "<image>Race: {class_name}.\n", }, 5: { "prefix": "{bos_token}Task: Find the race of people in the pictures.\n", "example": "<image>Race: {class_name}.", }, } prompt_templates_dict_instruct = { 0: { "prefix": "{bos_token}The user shows the picture of a person, and the assistant must find their race.\n", "example": ( "User:<image>What is this person's" " race?<end_of_utterance>\nAssistant: This person is {class_name}.<end_of_utterance>\n" ), }, } selected_prompt_template_id = 0 bool_instruct_templates = True class NLVR2SampleVMistralClassificationInContextAccWithKLAndEntropy(VMistralClassificationInContext): dataset_name: str = "HuggingFaceM4/NLVR2-Sample" metric_name: str = "UnfoldedClassificationMetrics" metric_kwargs = { "metrics": [ ClassifMetrics.ACCURACY, ClassifMetrics.KL_DISTRIBUTION, ClassifMetrics.KL_MEAN, ClassifMetrics.ENTROPY_DISTRIBUTION, ClassifMetrics.ENTROPY_MEAN, ] } default_query_split_name: str = "test" default_support_split_name: str = "train" label_column_name: str = "label" image_column_names: List[str] = ["left_image", "right_image"] context_column_names: List[str] = ["sentence"] length_normalize: bool = False mapping_class_names_to_prompt_names: dict = { "True": "True", "False": "False", } prompt_templates_dict = { 0: { "prefix": None, "example": ( "<image>{image_token}{token_around_image}{sentence} Is" " the preceding statement True or False? Answer: {class_name}." ), }, } class NLVR2NewSplitsVMistralClassificationInContextAccWithKLAndEntropy(VMistralClassificationInContext): dataset_name: str = "HuggingFaceM4/NLVR2_support_query_sets" default_query_split_name: str = "validation_query_set" default_support_split_name: str = "validation_support_set" validation_query_split_name: str = "validation_query_set" validation_support_split_name: str = "validation_support_set" test_query_split_name: str = "test_query_set" test_support_split_name: str = "test_support_set" metric_name: str = "UnfoldedClassificationMetrics" metric_kwargs = { "metrics": [ ClassifMetrics.ACCURACY, ClassifMetrics.KL_DISTRIBUTION, ClassifMetrics.KL_MEAN, ClassifMetrics.ENTROPY_DISTRIBUTION, ClassifMetrics.ENTROPY_MEAN, ] } label_column_name: str = "label" image_column_names: List[str] = ["left_image", "right_image"] context_column_names: List[str] = ["sentence"] length_normalize: bool = False prompt_templates_dict = { 0: { "prefix": None, "example": ( "<image>{image_token}{token_around_image}{sentence} Is" " the preceding statement True or False? Answer: {class_name}." ), }, 1: { "prefix": None, "example": ( "Left image: <image>. Right image:" " {image_token}{token_around_image}.\n{sentence} Is the preceding statement True or False? Answer:" " {class_name}.\n" ), }, 2: { "prefix": None, "example": ( "Left image: <image>. Right image:" " {image_token}{token_around_image}.\nIs the following statement True or False? Statement:" " {sentence}\nAnswer: {class_name}.\n" ), }, 3: { "prefix": None, "example": ( "<image>is the left image." " {image_token}{token_around_image}is the right image.\nIs the following statement True or False?" " Statement: {sentence}\nAnswer: {class_name}.\n" ), }, 4: { "prefix": ( 'You are provided with a "Right image", a "Left image", and a statement related to those 2 images.' " Using information from the images, you need to answer correctly whether the statement is True or" " False.\n" ), "example": ( "Left image: <image>. Right image:" " {image_token}{token_around_image}.\nIs the following statement True or False? Statement:" " {sentence}\nAnswer: {class_name}.\n" ), }, 5: { "prefix": ( 'You are provided with a "right image", a "left image", and a statement related to those 2 images.' " Using information from the images, you need to answer correctly whether the statement is True or" " False.\n" ), "example": ( "<image>is the left image." " {image_token}{token_around_image}is the right image.\nIs the following statement True or False?" " Statement: {sentence}\nAnswer: {class_name}.\n" ), }, 6: { "prefix": None, "example": ( "Left image: <image>\nRight image:" " {image_token}{token_around_image}\nStatement: {sentence}\nIs the preceding statement True or False?" " Answer: {class_name}.\n" ), }, 7: { "prefix": None, "example": ( "Left image: <image>\nRight image:" " {image_token}{token_around_image}\nDetermine whether the claim is True or False: {sentence}\nThe" " claim is {class_name}.\n" ), }, 8: { "prefix": None, "example": ( "Left image: <image>\nRight image:" " {image_token}{token_around_image}\nDetermine whether the claim is True or False: {sentence}\nThe" " claim is {class_name}.\n" ), }, 9: { "prefix": ( "It's a conversation between a human, the user, and an intelligent visual AI, the Bot. The user sends" ' two images, "Image Left" and "Image Right", along with an assertion about one or both of them. The' " bot has to determine whether this assertion is true or false.\n" ), "example": ( "User:<image>is the left image and" " {image_token}{token_around_image}is the right image. Is the following assertion true or false:" " {sentence}\nBot: {class_name}.\n" ), }, } selected_prompt_template_id = 3 class ScienceQAVMistralClassificationInContextAccWithKLAndEntropy(VMistralClassificationInContext): dataset_name: str = "HuggingFaceM4/ScienceQA_modif" metric_name: str = "UnfoldedClassificationMetrics" metric_kwargs = { "metrics": [ ClassifMetrics.ACCURACY, ClassifMetrics.KL_DISTRIBUTION, ClassifMetrics.KL_MEAN, ClassifMetrics.ENTROPY_DISTRIBUTION, ClassifMetrics.ENTROPY_MEAN, ] } default_query_split_name: str = "test" default_support_split_name: str = "train" label_column_name: str = "label" image_column_names: List[str] = ["image"] context_column_names: List[str] = ["context"] length_normalize: bool = False prompt_templates_dict = { 0: { "prefix": None, "example": "<image>{context}Answer: The best answer is {class_name}.", }, } class ScienceQANewSplitsOldSetupVMistralClassificationInContextAccWithKLAndEntropy(VMistralClassificationInContext): dataset_name: str = "HuggingFaceM4/ScienceQA_support_query_sets_old_setup" default_query_split_name: str = "validation_query_set" default_support_split_name: str = "validation_support_set" validation_query_split_name: str = "validation_query_set" validation_support_split_name: str = "validation_support_set" test_query_split_name: str = "test_query_set" test_support_split_name: str = "test_support_set" metric_name: str = "UnfoldedClassificationMetrics" metric_kwargs = { "metrics": [ ClassifMetrics.ACCURACY, ClassifMetrics.KL_DISTRIBUTION, ClassifMetrics.KL_MEAN, ClassifMetrics.ENTROPY_DISTRIBUTION, ClassifMetrics.ENTROPY_MEAN, ] } label_column_name: str = "label" image_column_names: List[str] = ["image"] context_column_names: List[str] = ["context", "solution"] tested_ex_excluded_context_columns: List[str] = ["solution"] length_normalize: bool = False prompt_templates_dict = { 0: { "prefix": None, "example": "<image>{context}Answer: The best answer is {class_name}.", }, 1: { "prefix": None, "example": "<image>{context}Answer: The best answer is {class_name}. {solution}", }, 2: { "prefix": None, "example": "<image>{context}Answer: {class_name}. {solution}", }, 3: { "prefix": None, "example": "<image>{context}Answer: The best answer is {class_name}.\n{solution}", }, 4: { "prefix": None, "example": "<image>{context}Answer: The best answer is {class_name}.\n", }, 5: { "prefix": None, "example": "<image>{context}Answer: The best answer is {class_name}.\n{solution}\n", }, } prompt_templates_dict_instruct = { 1: { "prefix": ( "{bos_token}The user asks a multiple-choice question and the assistant uses the image to answer.\n" ), "example": ( "User:<image>{context}<end_of_utterance>\nAssistant: The" " best answer is {class_name}. {solution}<end_of_utterance>\n" ), }, } selected_prompt_template_id = 1 class ScienceQANewSplitsVMistralClassificationInContextAccWithKLAndEntropy(VMistralClassificationInContext): dataset_name: str = "HuggingFaceM4/ScienceQA_support_query_sets" default_query_split_name: str = "validation_query_set" default_support_split_name: str = "validation_support_set" validation_query_split_name: str = "validation_query_set" validation_support_split_name: str = "validation_support_set" test_query_split_name: str = "test_query_set" test_support_split_name: str = "test_support_set" metric_name: str = "UnfoldedClassificationMetrics" metric_kwargs = { "metrics": [ ClassifMetrics.ACCURACY, ClassifMetrics.KL_DISTRIBUTION, ClassifMetrics.KL_MEAN, ClassifMetrics.ENTROPY_DISTRIBUTION, ClassifMetrics.ENTROPY_MEAN, ] } label_column_name: str = "label" image_column_names: List[str] = ["image"] # field "lecture" exists but has been taken off because of seq_len context_column_names: List[str] = ["question", "hint", "context", "solution"] tested_ex_excluded_context_columns: List[str] = ["solution"] length_normalize: bool = False prompt_templates_dict = { 0: { "prefix": None, "example": "<image>{question} {hint} {context}\nAnswer: The correct answer is {class_name}. {solution}\n", }, 1: { "prefix": None, "example": "<image>{question}{hint}{context}\nAnswer: The correct answer is {class_name}. {solution}\n", }, 2: { "prefix": ( "The following is a multiple choice science test answer sheet. A question related to the image is" " asked with multiple choices, and the correct answer is provided with an explanation detailing why" " this is the correct answer.\n" ), "example": "<image>{question}{hint}{context}\nAnswer: {class_name}. {solution}\n", }, 3: { "prefix": ( "Multiple choice answer sheet:\nFor each question related to the image, the answer is provided with an" " explanation detailing why it is correct.\n" ), "example": "<image>{question}{hint}{context}\nAnswer: {class_name}. {solution}\n", }, 4: { "prefix": None, "example": "<image>{question}{hint}{context}\nAnswer: The answer is {class_name}. {solution}\n", }, 5: { "prefix": None, "example": ( "<image>{question}{hint} Options: {context}\nAnswer: The correct answer is {class_name}. {solution}\n" ), }, 6: { "prefix": None, "example": ( "<image>{question}{hint} Options: {context}\nAnswer: The correct answer is {class_name} {solution}\n" ), }, 7: { "prefix": None, "example": ( "<image>{question}{hint} Choose the best answer" " among:\n{context}\nAnswer: The best answer is {class_name} {solution}\n" ), }, 8: { "prefix": None, "example": ( "<image>{question}{hint} Options: {context}\nAnswer:" " The correct answer is ({class_name}). {solution}\n" ), }, 9: { "prefix": None, "example": "<image>{question}{hint} Options: {context}\nAnswer: The correct answer is ({class_name}).\n", }, 10: { "prefix": None, "example": ( "<image>{question}{hint} Choose the best answer" " among:\n{context}\nAnswer: The best answer is {class_name}.\n" ), }, 11: { "prefix": None, "example": ( "<image>{question}{hint} Options: {context}\nAnswer:" " The correct answer is ({class_name}). {solution}\n" ), }, 12: { "prefix": None, "example": "<image>{question}{hint} Options: {context}\nAnswer: The correct answer is ({class_name}).\n", }, 13: { "prefix": None, "example": ( "<image>{hint}{question} Options: {context}\nAnswer:" " The correct answer is ({class_name}). {solution}\n" ), }, 14: { "prefix": None, "example": ( "<image>{hint}{question} Options: {context}\nAnswer:" " The correct answer is ({class_name}). {solution}\n" ), }, 15: { "prefix": None, "example": "<image>{hint}{question} Options: {context}\nAnswer: The correct answer is ({class_name}).\n", }, 16: { "prefix": None, "example": ( "<image>{hint}{question} Choose the best answer" " among:\n{context}\nAnswer: The best answer is {class_name}. {solution}\n" ), }, 17: { "prefix": None, "example": ( "<image>{hint}{question} Choose the best answer" " among:\n{context}\nAnswer: The best answer is {class_name}.\n" ), }, 18: { "prefix": None, "example": "<image>{hint}{question} Options: {context}\nAnswer: The correct answer is {class_name}.\n", }, } selected_prompt_template_id = 1 class ScienceQASampleVMistralClassificationInContextAccWithKLAndEntropy( ScienceQAVMistralClassificationInContextAccWithKLAndEntropy ): dataset_name: str = "HuggingFaceM4/ScienceQA_modif-Sample" class IIIT5KVMistralClassificationInContextAccWithKLAndEntropy(VMistralClassificationInContext): dataset_name: str = "HuggingFaceM4/IIIT-5K-classif" metric_name: str = "UnfoldedClassificationMetrics" metric_kwargs = { "metrics": [ ClassifMetrics.ACCURACY, ClassifMetrics.KL_DISTRIBUTION, ClassifMetrics.KL_MEAN, ClassifMetrics.ENTROPY_DISTRIBUTION, ClassifMetrics.ENTROPY_MEAN, ] } default_query_split_name: str = "test" default_support_split_name: str = "train" label_column_name: str = "label" tested_labels_column_name: str = "small_lexicon" image_column_names: List[str] = ["image"] length_normalize: bool = False prompt_templates_dict = { 0: { "prefix": None, "example": '<image>"{class_name}" is written on the picture.', }, } selected_prompt_template_id = 0 class IIIT5KSampleVMistralClassificationInContextAccWithKLAndEntropy( IIIT5KVMistralClassificationInContextAccWithKLAndEntropy ): dataset_name: str = "HuggingFaceM4/IIIT-5K-classif-Sample" class SimpleImageNet1kVMistralClassificationInContextAccWithKLAndEntropy( ImageNet1kVMistralClassificationInContextAccWithKLAndEntropy ): dataset_name: str = "HuggingFaceM4/simple-imagenet-1k" metric_kwargs = { "metrics": [ ClassifMetrics.ACCURACY, ClassifMetrics.KL_DISTRIBUTION, ClassifMetrics.KL_MEAN, ClassifMetrics.ENTROPY_DISTRIBUTION, ClassifMetrics.ENTROPY_MEAN, ] } tested_labels_column_name: str = "lexicon" class SimpleImageNet1kSampleVMistralClassificationInContextAccWithKLAndEntropy( SimpleImageNet1kVMistralClassificationInContextAccWithKLAndEntropy ): dataset_name: str = "HuggingFaceM4/simple-imagenet-1k-Sample" class VisDialNewSplitsVMistralClassificationInContextNDCG(VMistralClassificationInContext): dataset_name: str = "HuggingFaceM4/VisDial_modif_support_query_sets" metric_name: str = "UnfoldedClassificationMetrics" metric_kwargs = { "metrics": [ ClassifMetrics.NDCG, ] } default_query_split_name: str = "validation_query_set" default_support_split_name: str = "validation_support_set" validation_query_split_name: str = "validation_query_set" validation_support_split_name: str = "validation_support_set" test_query_split_name: str = "test_query_set" test_support_split_name: str = "test_support_set" label_column_name: str = "answer" tested_labels_column_name: str = "answer_options" image_column_names: List[str] = ["image"] context_column_names: List[str] = ["context", "caption"] relevance_scores_column_name: str = "relevance_scores" length_normalize: bool = False prompt_templates_dict = { 0: { "prefix": None, "example": "<image>Caption: {caption}. {context}{class_name}.", }, 1: { "prefix": None, "example": "<image>{caption}. {context}{class_name}.", }, 2: { "prefix": None, "example": "<image>Image description: {caption}. {context}{class_name}.", }, 3: { "prefix": "{bos_token}Task: Given an image and a caption of it, answer the questions.\n", "example": "<image>Caption: {caption}. {context}{class_name}.", }, 4: { "prefix": "{bos_token}Task: Given an image and its description, answer the questions.\n", "example": "<image>Image description: {caption}. {context}{class_name}.", }, 5: { "prefix": "{bos_token}Task: Answer the questions based on the images and their descriptions.\n", "example": "<image>Image description: {caption}. {context}{class_name}.", }, 6: { "prefix": "{bos_token}Answer the questions based on the images and their descriptions.\n", "example": "<image>Caption: {caption}. {context}{class_name}.", }, 7: { "prefix": ( "{bos_token}Instruction: provide an answer to the questions. Use the images and their captions to" " answer.\n" ), "example": "<image>Caption: {caption}. {context}{class_name}.", }, 8: { "prefix": "{bos_token}Instruction: Answer the questions using images and their captions.\n", "example": "<image>Caption: {caption}. {context}{class_name}.", }, 9: { "prefix": "{bos_token}Instruction: Answer the questions using images.\n", "example": "<image>Image description: {caption}. {context}{class_name}.", }, 10: { "prefix": None, "example": "<image>Caption: {caption}. {context}{class_name}.\n", }, 11: { "prefix": None, "example": "<image>{caption}. {context}{class_name}.\n", }, 12: { "prefix": None, "example": "<image>Image description: {caption}. {context}{class_name}.\n", }, 13: { "prefix": "{bos_token}Task: Given an image and a caption of it, answer the questions.\n", "example": "<image>Caption: {caption}. {context}{class_name}.\n", }, 14: { "prefix": "{bos_token}Task: Given an image and its description, answer the questions.\n", "example": "<image>Image description: {caption}. {context}{class_name}.\n", }, 15: { "prefix": "{bos_token}Task: Answer the questions based on the images and their descriptions.\n", "example": "<image>Image description: {caption}. {context}{class_name}.\n", }, 16: { "prefix": "{bos_token}Answer the questions based on the images and their descriptions.\n", "example": "<image>Caption: {caption}. {context}{class_name}.\n", }, 17: { "prefix": ( "{bos_token}Instruction: provide an answer to the questions. Use the images and their captions to" " answer.\n" ), "example": "<image>Caption: {caption}. {context}{class_name}.\n", }, 18: { "prefix": "{bos_token}Instruction: Answer the questions using images and their captions.\n", "example": "<image>Caption: {caption}. {context}{class_name}.\n", }, 19: { "prefix": "{bos_token}Instruction: Answer the questions using images.\n", "example": "<image>Image description: {caption}. {context}{class_name}.\n", }, } selected_prompt_template_id = 1 class MMBenchNewSplitsVMistralClassificationInContextAccWithKLAndEntropy(VMistralClassificationInContext): dataset_name: str = "HuggingFaceM4/mmbench_support_query_sets" default_query_split_name: str = "validation_query_set" default_support_split_name: str = "validation_support_set" validation_query_split_name: str = "validation_query_set" validation_support_split_name: str = "validation_support_set" metric_name: str = "UnfoldedClassificationMetrics" metric_kwargs = { "metrics": [ ClassifMetrics.ACCURACY, ClassifMetrics.KL_DISTRIBUTION, ClassifMetrics.KL_MEAN, ClassifMetrics.ENTROPY_DISTRIBUTION, ClassifMetrics.ENTROPY_MEAN, ClassifMetrics.DEFAULT_TO_SERVER_RESULTS, ] } label_column_name: str = "label" image_column_names: List[str] = ["image"] context_column_names: List[str] = ["context"] length_normalize: bool = False prompt_templates_dict = { 0: { "prefix": None, "example": "<image>{context}{class_name}.\n", }, } prompt_templates_dict_instruct = { 0: { "prefix": ( "{bos_token}The user asks a multiple-choice question and the assistant uses the image to answer.\n" ), "example": "User:<image>{context}<end_of_utterance>\nAssistant: {class_name}.<end_of_utterance>\n", }, } selected_prompt_template_id = 0 class SEEDAllVMistralClassificationInContextAccWithKLAndEntropy(VMistralClassificationInContext): dataset_name: str = "HuggingFaceM4/SEED" default_query_split_name: str = "test" default_support_split_name: str = "test" test_query_split_name: str = "test" test_support_split_name: str = "test" metric_name: str = "UnfoldedClassificationMetrics" metric_kwargs = { "metrics": [ ClassifMetrics.ACCURACY, ClassifMetrics.KL_DISTRIBUTION, ClassifMetrics.KL_MEAN, ClassifMetrics.ENTROPY_DISTRIBUTION, ClassifMetrics.ENTROPY_MEAN, ] } label_column_name: str = "answer" image_column_names: List[str] = ["image"] context_column_names: List[str] = ["question", "choice_a", "choice_b", "choice_c", "choice_d"] length_normalize: bool = False prompt_templates_dict = { 0: { "prefix": ( "{bos_token}The user asks a multiple-choice question and the assistant uses the image to answer.\n" ), "example": ( "User:<image>Question: {question}\n" "Possible answers:\nA: {choice_a}\nB: {choice_b}\nC: {choice_c}\nD: {choice_d}<end_of_utterance>\n" "Assistant: Correct answer: {class_name}.<end_of_utterance>\n" ), } } selected_prompt_template_id = 0 class SEEDSceneUnderstandingVMistralClassificationInContextAccWithKLAndEntropy( SEEDAllVMistralClassificationInContextAccWithKLAndEntropy ): dataset_config = "Scene_Understanding" class SEEDInstanceIdentityVMistralClassificationInContextAccWithKLAndEntropy( SEEDAllVMistralClassificationInContextAccWithKLAndEntropy ): dataset_config = "Instance_Identity" class SEEDInstanceAttributesVMistralClassificationInContextAccWithKLAndEntropy( SEEDAllVMistralClassificationInContextAccWithKLAndEntropy ): dataset_config = "Instance_Attributes" class SEEDInstanceLocationVMistralClassificationInContextAccWithKLAndEntropy( SEEDAllVMistralClassificationInContextAccWithKLAndEntropy ): dataset_config = "Instance_Location" class SEEDInstancesCountingVMistralClassificationInContextAccWithKLAndEntropy( SEEDAllVMistralClassificationInContextAccWithKLAndEntropy ): dataset_config = "Instances_Counting" class SEEDSpatialRelationVMistralClassificationInContextAccWithKLAndEntropy( SEEDAllVMistralClassificationInContextAccWithKLAndEntropy ): dataset_config = "Spatial_Relation" class SEEDInstanceInteractionVMistralClassificationInContextAccWithKLAndEntropy( SEEDAllVMistralClassificationInContextAccWithKLAndEntropy ): dataset_config = "Instance_Interaction" class SEEDVisualReasoningVMistralClassificationInContextAccWithKLAndEntropy( SEEDAllVMistralClassificationInContextAccWithKLAndEntropy ): dataset_config = "Visual_Reasoning" class SEEDTextUnderstandingVMistralClassificationInContextAccWithKLAndEntropy( SEEDAllVMistralClassificationInContextAccWithKLAndEntropy ): dataset_config = "Text_Understanding" class SugarCrepeSwapObjVMistralClassificationInContextAccWithKLAndEntropy(VMistralClassificationInContext): dataset_name: str = "HuggingFaceM4/SugarCrepe_swap_obj" default_query_split_name: str = "test" default_support_split_name: str = "test" test_query_split_name: str = "test" test_support_split_name: str = "test" metric_name: str = "UnfoldedClassificationMetrics" metric_kwargs = { "metrics": [ ClassifMetrics.ACCURACY, ClassifMetrics.KL_DISTRIBUTION, ClassifMetrics.KL_MEAN, ClassifMetrics.ENTROPY_DISTRIBUTION, ClassifMetrics.ENTROPY_MEAN, ] } label_column_name: str = "true_label" tested_labels_column_name: str = "tested_labels" image_column_names: List[str] = ["image"] length_normalize: bool = False prompt_templates_dict = { 0: { "prefix": None, "example": ( "{bos_token}User:<image>Describe this" " image.<end_of_utterance>\nAssistant: {class_name}.<end_of_utterance>\n" ), } } selected_prompt_template_id = 0 class SugarCrepeSwapAttVMistralClassificationInContextAccWithKLAndEntropy( SugarCrepeSwapObjVMistralClassificationInContextAccWithKLAndEntropy ): dataset_name: str = "HuggingFaceM4/SugarCrepe_swap_att" class SugarCrepeReplaceRelVMistralClassificationInContextAccWithKLAndEntropy( SugarCrepeSwapObjVMistralClassificationInContextAccWithKLAndEntropy ): dataset_name: str = "HuggingFaceM4/SugarCrepe_replace_rel" class SugarCrepeReplaceObjVMistralClassificationInContextAccWithKLAndEntropy( SugarCrepeSwapObjVMistralClassificationInContextAccWithKLAndEntropy ): dataset_name: str = "HuggingFaceM4/SugarCrepe_replace_obj" class SugarCrepeReplaceAttVMistralClassificationInContextAccWithKLAndEntropy( SugarCrepeSwapObjVMistralClassificationInContextAccWithKLAndEntropy ): dataset_name: str = "HuggingFaceM4/SugarCrepe_replace_att" class SugarCrepeAddObjVMistralClassificationInContextAccWithKLAndEntropy( SugarCrepeSwapObjVMistralClassificationInContextAccWithKLAndEntropy ): dataset_name: str = "HuggingFaceM4/SugarCrepe_add_obj" class SugarCrepeAddAttVMistralClassificationInContextAccWithKLAndEntropy( SugarCrepeSwapObjVMistralClassificationInContextAccWithKLAndEntropy ): dataset_name: str = "HuggingFaceM4/SugarCrepe_add_att" class MMBenchChatbotVMistralClassificationInContextAccWithKLAndEntropy(VMistralClassificationInContext): dataset_name: str = "HuggingFaceM4/MMBench_modif_chatbot" default_query_split_name: str = "validation" default_support_split_name: str = "validation" validation_query_split_name: str = "validation" validation_support_split_name: str = "validation" test_query_split_name: str = "test" test_support_split_name: str = "test" metric_name: str = "UnfoldedClassificationMetrics" metric_kwargs = { "metrics": [ ClassifMetrics.ACCURACY, ClassifMetrics.KL_DISTRIBUTION, ClassifMetrics.KL_MEAN, ClassifMetrics.ENTROPY_DISTRIBUTION, ClassifMetrics.ENTROPY_MEAN, ClassifMetrics.DEFAULT_TO_SERVER_RESULTS, ] } id_column_name: str = "index" label_column_name: str = "label" image_column_names: List[str] = ["image"] context_column_names: List[str] = ["context"] length_normalize: bool = False prompt_templates_dict = { 0: { "prefix": "{bos_token}", "example": "User:<image>{context}<end_of_utterance>\nAssistant: Answer: {class_name}<end_of_utterance>\n", }, } selected_prompt_template_id = 0 class MMBenchChatbotValDedupVMistralClassificationInContextAccWithKLAndEntropy(VMistralClassificationInContext): dataset_name: str = "HuggingFaceM4/MMBench_modif_chatbot_dedup_val" default_query_split_name: str = "validation" default_support_split_name: str = "validation" validation_query_split_name: str = "validation" validation_support_split_name: str = "validation" test_query_split_name: str = "test" test_support_split_name: str = "test" metric_name: str = "UnfoldedClassificationMetrics" metric_kwargs = { "metrics": [ ClassifMetrics.ACCURACY, ClassifMetrics.KL_DISTRIBUTION, ClassifMetrics.KL_MEAN, ClassifMetrics.ENTROPY_DISTRIBUTION, ClassifMetrics.ENTROPY_MEAN, ClassifMetrics.DEFAULT_TO_SERVER_RESULTS, ] } label_column_name: str = "label" image_column_names: List[str] = ["image"] context_column_names: List[str] = ["context"] length_normalize: bool = False prompt_templates_dict = { 0: { "prefix": "{bos_token}", "example": "User:<image>{context}<end_of_utterance>\nAssistant: Answer: {class_name}<end_of_utterance>\n", }, } selected_prompt_template_id = 0 class POPEChatbotVMistralClassificationInContextAccWithKLAndEntropy(VMistralClassificationInContext): dataset_name: str = "HuggingFaceM4/POPE_modif" default_query_split_name: str = "test" default_support_split_name: str = "test" test_query_split_name: str = "test" test_support_split_name: str = "test" metric_name: str = "UnfoldedClassificationMetrics" metric_kwargs = { "metrics": [ ClassifMetrics.ACCURACY, ClassifMetrics.F1_SCORE, ClassifMetrics.KL_DISTRIBUTION, ClassifMetrics.KL_MEAN, ClassifMetrics.ENTROPY_DISTRIBUTION, ClassifMetrics.ENTROPY_MEAN, ] } label_column_name: str = "label" image_column_names: List[str] = ["image"] context_column_names: List[str] = ["context"] length_normalize: bool = False prompt_templates_dict = { 0: { "prefix": "{bos_token}", "example": ( "User:<image>{context}\nAnswer yes or" " no.<end_of_utterance>\nAssistant: {class_name}.<end_of_utterance>\n" ), }, } selected_prompt_template_id = 0 class ScienceQAImgChatbotVMistralClassificationInContextAccWithKLAndEntropy(VMistralClassificationInContext): dataset_name: str = "HuggingFaceM4/ScienceQAImg_Modif" default_query_split_name: str = "validation" default_support_split_name: str = "validation" validation_query_split_name: str = "validation" validation_support_split_name: str = "validation" test_query_split_name: str = "test" test_support_split_name: str = "test" metric_name: str = "UnfoldedClassificationMetrics" metric_kwargs = { "metrics": [ ClassifMetrics.ACCURACY, ClassifMetrics.KL_DISTRIBUTION, ClassifMetrics.KL_MEAN, ClassifMetrics.ENTROPY_DISTRIBUTION, ClassifMetrics.ENTROPY_MEAN, ] } label_column_name: str = "label" image_column_names: List[str] = ["image"] context_column_names: List[str] = ["context"] length_normalize: bool = False prompt_templates_dict = { 0: { "prefix": "{bos_token}", "example": "User:<image>{context}<end_of_utterance>\nAssistant: Answer: {class_name}<end_of_utterance>\n", }, } selected_prompt_template_id = 0 class ScienceQAImgChatbotgNoMCQVMistralClassificationInContextAccWithKLAndEntropy(VMistralClassificationInContext): dataset_name: str = "HuggingFaceM4/ScienceQAImg_Modif_NoMCQ" default_query_split_name: str = "validation" default_support_split_name: str = "validation" validation_query_split_name: str = "validation" validation_support_split_name: str = "validation" test_query_split_name: str = "test" test_support_split_name: str = "test" metric_name: str = "UnfoldedClassificationMetrics" metric_kwargs = { "metrics": [ ClassifMetrics.ACCURACY, ClassifMetrics.KL_DISTRIBUTION, ClassifMetrics.KL_MEAN, ClassifMetrics.ENTROPY_DISTRIBUTION, ClassifMetrics.ENTROPY_MEAN, ] } label_column_name: str = "label" tested_labels_column_name: str = "tested_labels" image_column_names: List[str] = ["image"] context_column_names: List[str] = ["context"] length_normalize: bool = False prompt_templates_dict = { 0: { "prefix": "{bos_token}", "example": "User:<image>{context}<end_of_utterance>\nAssistant: {class_name}<end_of_utterance>\n", }, } selected_prompt_template_id = 0 class SEEDImgChatbotVMistralClassificationInContextAccWithKLAndEntropy(VMistralClassificationInContext): dataset_name: str = "HuggingFaceM4/SEED_Img_Modif" default_query_split_name: str = "test" default_support_split_name: str = "test" test_query_split_name: str = "test" test_support_split_name: str = "test" metric_name: str = "UnfoldedClassificationMetrics" metric_kwargs = { "metrics": [ ClassifMetrics.ACCURACY, ClassifMetrics.KL_DISTRIBUTION, ClassifMetrics.KL_MEAN, ClassifMetrics.ENTROPY_DISTRIBUTION, ClassifMetrics.ENTROPY_MEAN, ] } label_column_name: str = "answer" image_column_names: List[str] = ["image"] context_column_names: List[str] = ["question"] length_normalize: bool = False prompt_templates_dict = { 0: { "prefix": "{bos_token}", "example": "User:<image>{question}<end_of_utterance>\nAssistant: Answer: {class_name}<end_of_utterance>\n", }, } selected_prompt_template_id = 0 class QBenchChatbotVMistralClassificationInContextAccWithKLAndEntropy(VMistralClassificationInContext): dataset_name: str = "HuggingFaceM4/QBench_Modif" default_query_split_name: str = "validation" default_support_split_name: str = "validation" validation_query_split_name: str = "validation" validation_support_split_name: str = "validation" test_query_split_name: str = "test" test_support_split_name: str = "test" metric_name: str = "UnfoldedClassificationMetrics" metric_kwargs = { "metrics": [ ClassifMetrics.ACCURACY, ClassifMetrics.KL_DISTRIBUTION, ClassifMetrics.KL_MEAN, ClassifMetrics.ENTROPY_DISTRIBUTION, ClassifMetrics.ENTROPY_MEAN, ] } label_column_name: str = "label" tested_labels_column_name: str = "tested_labels" image_column_names: List[str] = ["image"] context_column_names: List[str] = ["question"] length_normalize: bool = False prompt_templates_dict = { 0: { "prefix": "{bos_token}", "example": "User:<image>{question}<end_of_utterance>\nAssistant: {class_name}.<end_of_utterance>\n", }, } selected_prompt_template_id = 0 class RavenChatbotVMistralClassificationInContextAccWithKLAndEntropy(VMistralClassificationInContext): dataset_name: str = "HuggingFaceM4/RAVEN_rendered" dataset_config = None default_query_split_name: str = "validation" default_support_split_name: str = "validation" validation_query_split_name: str = "validation" validation_support_split_name: str = "validation" test_query_split_name: str = "test" test_support_split_name: str = "test" metric_name: str = "UnfoldedClassificationMetrics" metric_kwargs = { "metrics": [ ClassifMetrics.ACCURACY, ClassifMetrics.KL_MEAN, ClassifMetrics.ENTROPY_MEAN, ClassifMetrics.PER_BUCKET_ACCURACY, ] } label_column_name: str = "label" image_column_names: List[str] = ["image"] context_column_names: List[str] = ["question"] buckets_keys: List[str] = ["source"] length_normalize: bool = False prompt_templates_dict = { 0: { "prefix": "{bos_token}", "example": "User:<image>{question}<end_of_utterance>\nAssistant: {class_name}.<end_of_utterance>\n", }, } selected_prompt_template_id = 0 class VSRChatbotVMistralClassificationInContextAccWithKLAndEntropy(VMistralClassificationInContext): dataset_name: str = "HuggingFaceM4/VSR_chatbot" dataset_config = None default_query_split_name: str = "validation" default_support_split_name: str = "train" validation_query_split_name: str = "validation" validation_support_split_name: str = "train" test_query_split_name: str = "test" test_support_split_name: str = "train" metric_name: str = "UnfoldedClassificationMetrics" metric_kwargs = { "metrics": [ ClassifMetrics.ACCURACY, ClassifMetrics.KL_MEAN, ClassifMetrics.ENTROPY_MEAN, ] } label_column_name: str = "answer" image_column_names: List[str] = ["image"] context_column_names: List[str] = ["question"] length_normalize: bool = False prompt_templates_dict_instruct = { 0: { "prefix": "{bos_token}", "example": "User:<image>{question}<end_of_utterance>\nAssistant: {class_name}.<end_of_utterance>\n", }, } selected_prompt_template_id = 0 bool_instruct_templates = True class MathVistaMCQChatbotVMistralClassificationInContextAccWithKLAndEntropy(VMistralClassificationInContext): dataset_name: str = "HuggingFaceM4/MathVista_MCQ" dataset_config = None default_query_split_name: str = "testmini" default_support_split_name: str = "testmini" validation_query_split_name: str = "testmini" validation_support_split_name: str = "testmini" test_query_split_name: str = "test" test_support_split_name: str = "testmini" metric_name: str = "UnfoldedClassificationMetrics" metric_kwargs = { "metrics": [ ClassifMetrics.ACCURACY, ClassifMetrics.KL_MEAN, ClassifMetrics.ENTROPY_MEAN, ClassifMetrics.DEFAULT_TO_SERVER_RESULTS, ] } label_column_name: str = "label" image_column_names: List[str] = ["image"] context_column_names: List[str] = ["question"] length_normalize: bool = False prompt_templates_dict_instruct = { 0: { "prefix": "{bos_token}", "example": "User:<image>{question}<end_of_utterance>\nAssistant: Answer: {class_name}<end_of_utterance>\n", }, } selected_prompt_template_id = 0 bool_instruct_templates = True class MMMUMCQChatbotVMistralClassificationInContextAccWithKLAndEntropy(VMistralClassificationInContext): dataset_name: str = "HuggingFaceM4/MMMU_MCQ" dataset_config = None default_query_split_name: str = "validation" default_support_split_name: str = "dev" validation_query_split_name: str = "validation" validation_support_split_name: str = "dev" test_query_split_name: str = "test" test_support_split_name: str = "dev" metric_name: str = "UnfoldedClassificationMetrics" metric_kwargs = { "metrics": [ ClassifMetrics.ACCURACY, ClassifMetrics.KL_MEAN, ClassifMetrics.ENTROPY_MEAN, ClassifMetrics.DEFAULT_TO_SERVER_RESULTS, ] } id_column_name: str = "id" label_column_name: str = "label" image_column_names: List[str] = ["images"] context_column_names: List[str] = ["question"] length_normalize: bool = False prompt_templates_dict_instruct = { 0: { "prefix": "{bos_token}", "example": "User: {question}<end_of_utterance>\nAssistant: Answer: {class_name}<end_of_utterance>\n", }, } selected_prompt_template_id = 0 bool_instruct_templates = True