vision/m4/training/dataset_utils.py (391 lines of code) (raw):

""" This file defines the data decoding logic (i.e. from web tar hosted on s3 to samples feedable to packing) """ import io import json import logging import random import fitz import PIL.Image import webdataset as wds from webdataset.tariterators import group_by_keys, tar_file_expander, url_opener from m4.training.types import DatasetTypes meta_prefix = "__" meta_suffix = "__" logger = logging.getLogger(__name__) trace = False def check_webdataset_command(command): if "s3:/" not in command: return True command = command.strip() if not command.startswith("pipe:bash"): return False if not command.endswith(".tar"): return False if "get_file.sh" not in command: return False return True def webdoc_valid_sample(sample): """Check whether a sample is valid. :param sample: sample to be checked """ return ( sample is not None and isinstance(sample, dict) and len(list(sample.keys())) > 0 and not sample.get("__bad__", False) and sample_has_all_files(sample) ) def sample_has_all_files(current_sample): meta = current_sample.get("metadata.value", None) if meta is None: return False meta = meta.decode("utf-8") if len(meta) == 0: return False target_file_list = meta.split("\n") fname_keys = [key for key in current_sample.keys() if key.endswith(".fname")] fnames = [current_sample[key] for key in fname_keys] check = all([fname in fnames for fname in target_file_list]) if not check: return False return True class ImageDecoder: def __call__(self, bytes_): img = PIL.Image.open(io.BytesIO(bytes_)) img.load() return img # Taken from https://github.com/mlfoundations/open_clip/blob/c48111dacac55db24878af229d8a5662c03e6f1c/src/training/data.py#L180-L183 def log_and_continue(exn): """Call in an exception handler to ignore any exception, issue a warning, and continue.""" logging.warning(f"Handling webdataset error ({repr(exn)}). Ignoring.") return True def collate_dicts(samples): keys = samples[0].keys() batched_samples = {key: [sample[key] for sample in samples] for key in keys} return batched_samples # Web Documents Utils # Adapt group_by_keys to our webdocument format in which each samples contains several text and image files # https://github.com/webdataset/webdataset/blob/039d74319ae55e5696dcef89829be9671802cf70/webdataset/tariterators.py#L195-L250 def group_by_keys_interleaved(data, handler=log_and_continue): """Return function over iterator that groups key, value pairs into samples.""" current_sample = None for filesample in data: try: assert isinstance(filesample, dict) fname, value = filesample["fname"], filesample["data"] fname = fname.strip("./") if fname.endswith(".metadata.txt"): prefix, data_type, extension = fname.split(".") suffix = data_type else: prefix, idx, data_type, extension = fname.split(".") if data_type not in ["text", "image"]: raise ValueError(f"{fname}: unknown data type {data_type}") suffix = idx if trace: print( f"prefix: {prefix}, idx: {idx}, data_type: {data_type}, extension: {extension}, keys:" f" {current_sample.keys() if isinstance(current_sample, dict) else None}" ) if prefix is None: continue if current_sample is None or prefix != current_sample["__key__"]: valid = webdoc_valid_sample(current_sample) if valid: yield current_sample elif current_sample is not None: logging.warning(f"{fname}: invalid sample {current_sample} ignored") current_sample = dict(__key__=prefix, __url__=filesample["__url__"]) if suffix in current_sample: raise ValueError(f"{fname}: duplicate file name in tar file {suffix} {current_sample.keys()}") current_sample[f"{suffix}.value"] = value current_sample[f"{suffix}.type"] = data_type current_sample[f"{suffix}.fname"] = fname except Exception as exn: exn.args = exn.args + (filesample.get("stream"), filesample.get("url")) if handler(exn): continue else: break if webdoc_valid_sample(current_sample): yield current_sample def _tarfile_to_webdocument_samples(src, handler=log_and_continue): streams = url_opener(src, handler=handler) files = tar_file_expander(streams, handler=handler) samples = group_by_keys_interleaved(files, handler=handler) return samples tarfile_to_webdocument_samples = wds.filters.pipelinefilter(_tarfile_to_webdocument_samples) def _collate_texts_and_images_webdocument(data, handler=log_and_continue): for sample in data: try: max_example_indices = max( [int(key.split(".")[0]) for key in sample.keys() if key.endswith(".value") and key != "metadata.value"] ) texts = [None for _ in range(max_example_indices + 1)] images = [None for _ in range(max_example_indices + 1)] for idx in range(max_example_indices + 1): if f"{idx}.value" not in sample: continue if "text" in sample[f"{idx}.type"]: texts[idx] = sample[f"{idx}.value"] elif "image" in sample[f"{idx}.type"]: images[idx] = sample[f"{idx}.value"] else: raise ValueError(f"Unknown data type: {sample[f'{idx}.type']}") example = {"__key__": sample["__key__"], "__url__": sample["__url__"], "texts": texts, "images": images} yield example except Exception as exn: exn.args = exn.args + (sample.get("stream"), sample.get("url")) if handler(exn): continue else: break collate_texts_and_images_webdocument = wds.filters.pipelinefilter(_collate_texts_and_images_webdocument) def _decode_image_and_text_webdocument(data, handler=log_and_continue): image_decoder = ImageDecoder() for sample in data: try: sample["images"] = [image_decoder(image) if image is not None else None for image in sample["images"]] sample["texts"] = [text.decode("utf-8") if text is not None else None for text in sample["texts"]] yield sample except Exception as exn: exn.args = exn.args + (sample.get("stream"), sample.get("url")) if handler(exn): continue else: break decode_image_and_text_webdocument = wds.filters.pipelinefilter(_decode_image_and_text_webdocument) # Image text pairs utils def split_keep_2(x): x = x.strip("./") x_splitter = x.split(".") return x_splitter[0], x_splitter[1] def _tarfile_to_pair_samples(src, handler=log_and_continue): streams = url_opener(src, handler=handler) files = tar_file_expander(streams, handler=handler) samples = group_by_keys(files, keys=split_keep_2, handler=handler) return samples tarfile_to_pair_samples = wds.filters.pipelinefilter(_tarfile_to_pair_samples) def _decode_image_and_text_pairs(data, handler=log_and_continue): image_decoder = ImageDecoder() for sample in data: try: sample["image"] = image_decoder(sample["image"]) sample["text"] = sample["text"].decode("utf-8") yield sample except Exception as exn: exn.args = exn.args + (sample.get("stream"), sample.get("url")) if handler(exn): continue else: break decode_image_and_text_pairs = wds.filters.pipelinefilter(_decode_image_and_text_pairs) # OCR utils # Copy pasted and adapted from https://github.com/huggingface/chug/blob/cfb16882e1058b37871b61fe8f76830cef3d8750/src/chug/webdataset/doc_anno_pipe.py#L89C4-L89C4 def _decode_pdf_pages( sample, num_anno_pages, ): image_fmt = "L" with io.BytesIO(sample["pdf"]) as b: # FIXME test and use an alternate pdf reader/render as default assert fitz is not None, "fitz (pymupdf) is not installed and enabled" doc = fitz.Document(stream=b) num_image_pages = doc.page_count if num_image_pages != num_anno_pages: logger.warning( f"Mismatch between num image and num annotation pages {num_image_pages} != {num_anno_pages}" f" for sample {sample['__url__']}, {sample['__key__']}." ) decoded_image_pages = [] for page_index in range(num_anno_pages): page = doc.load_page(page_index) pixmap = page.get_pixmap(dpi=150) page_image = PIL.Image.frombuffer("RGB", (pixmap.width, pixmap.height), pixmap.samples) page_image = page_image.convert(image_fmt) decoded_image_pages += [page_image] return decoded_image_pages def _decode_ocr_documents(data, handler=log_and_continue): # Only used for rendered_text dataset image_decoder = ImageDecoder() # Limit the number of pages to avoid OOM MAX_NUM_PAGES = 1 for sample in data: try: sample_dict = json.loads(sample["json"].decode("utf-8")) document = dict() # This case is for the rendered_text dataset if "png" in sample: document["images"] = [image_decoder(sample["png"])] # For the rendered text dataset, we know for sure a separation is a new line. document["texts"] = ["\n".join(sample_dict["ocr_annotation"]["text"])] else: document["images"] = _decode_pdf_pages(sample, num_anno_pages=len(sample_dict["pages"])) # pdfa has a lines/words subdict, but not idl if "lines" in sample_dict["pages"][0]: document["texts"] = [" ".join(page["lines"]["text"]) for page in sample_dict["pages"]] else: document["texts"] = [" ".join(page["text"]) for page in sample_dict["pages"]] # Make sure we don't yield documents with too many pages if len(document["texts"]) > MAX_NUM_PAGES: chunked_document = dict() for chunk_start_index in range(0, len(document["texts"]), MAX_NUM_PAGES): chunked_document["texts"] = document["texts"][ chunk_start_index : chunk_start_index + MAX_NUM_PAGES ] chunked_document["images"] = document["images"][ chunk_start_index : chunk_start_index + MAX_NUM_PAGES ] yield chunked_document else: yield document except Exception as exn: exn.args = exn.args + (sample.get("stream"), sample.get("url")) if handler(exn): continue else: break decode_ocr_documents = wds.filters.pipelinefilter(_decode_ocr_documents) # Image/question/asnwer triplets utils def _decode_iqa_triplets(data, handler=log_and_continue): image_decoder = ImageDecoder() for sample in data: try: sample["image"] = image_decoder(sample["image"]) sample["question"] = sample["question"].decode("utf-8") sample["answer"] = sample["answer"].decode("utf-8") yield sample except Exception as exn: exn.args = exn.args + (sample.get("stream"), sample.get("url")) if handler(exn): continue else: break decode_iqa_triplets = wds.filters.pipelinefilter(_decode_iqa_triplets) # SFT utils def _decode_image_and_text_sft(data, handler=log_and_continue): image_decoder = ImageDecoder() for sample in data: try: sample["images"] = [image_decoder(image) for image in sample["images"] if image is not None] sample["texts"] = [json.loads(text.decode("utf-8")) for text in sample["texts"] if text is not None] yield sample except Exception as exn: exn.args = exn.args + (sample.get("stream"), sample.get("url")) if handler(exn): continue else: break decode_image_and_text_sft = wds.filters.pipelinefilter(_decode_image_and_text_sft) # General def _get_web_dataset( urls, tar_to_samples_ops, decode_and_batch_ops, shuffle_initial_urls_list=False, shuffle_before_split_by_node_buffer_size=100, shuffle_before_split_by_worker_buffer_size=100, shuffle_after_tarfile_to_samples_buffer_size=100, shuffle_after_batching_buffer_size=1000, ): if shuffle_initial_urls_list: random.shuffle(urls) pipeline_list = [wds.SimpleShardList(urls)] if shuffle_before_split_by_node_buffer_size is not None: pipeline_list.append(wds.shuffle(shuffle_before_split_by_node_buffer_size)) pipeline_list.append(wds.split_by_node) if shuffle_before_split_by_worker_buffer_size is not None: pipeline_list.append(wds.shuffle(shuffle_before_split_by_worker_buffer_size)) pipeline_list.extend(tar_to_samples_ops) if shuffle_after_tarfile_to_samples_buffer_size is not None: pipeline_list.append(wds.shuffle(shuffle_after_tarfile_to_samples_buffer_size)) pipeline_list.extend(decode_and_batch_ops) if shuffle_after_batching_buffer_size is not None: pipeline_list.append(wds.shuffle(shuffle_after_batching_buffer_size)) dataset = wds.DataPipeline(pipeline_list) return dataset def get_webdataset( urls, ds_type: DatasetTypes, batch_size: int, shuffle_initial_urls_list, shuffle_before_split_by_node_buffer_size, shuffle_before_split_by_worker_buffer_size, shuffle_after_tarfile_to_samples_buffer_size, shuffle_after_batching_buffer_size, ): if ds_type == DatasetTypes.WEB_DOCUMENTS: tar_to_samples_ops = [ wds.split_by_worker, tarfile_to_webdocument_samples(), ] decode_and_batch_ops = [ collate_texts_and_images_webdocument(), decode_image_and_text_webdocument(), wds.batched(batch_size, collation_fn=collate_dicts, partial=True), ] return _get_web_dataset( urls, tar_to_samples_ops, decode_and_batch_ops, shuffle_initial_urls_list, shuffle_before_split_by_node_buffer_size, shuffle_before_split_by_worker_buffer_size, shuffle_after_tarfile_to_samples_buffer_size, shuffle_after_batching_buffer_size, ) elif ds_type == DatasetTypes.IMAGE_CAPTION_PAIRS: tar_to_samples_ops = [ wds.split_by_worker, tarfile_to_pair_samples(handler=log_and_continue), ] decode_and_batch_ops = [ decode_image_and_text_pairs(), wds.batched(batch_size, collation_fn=collate_dicts, partial=True), ] return _get_web_dataset( urls, tar_to_samples_ops, decode_and_batch_ops, shuffle_initial_urls_list, shuffle_before_split_by_node_buffer_size, shuffle_before_split_by_worker_buffer_size, shuffle_after_tarfile_to_samples_buffer_size, shuffle_after_batching_buffer_size, ) elif ds_type == DatasetTypes.OCR: tar_to_samples_ops = [ wds.split_by_worker, tarfile_to_pair_samples(handler=log_and_continue), ] decode_and_batch_ops = [ decode_ocr_documents(), wds.batched(batch_size, collation_fn=collate_dicts, partial=True), ] return _get_web_dataset( urls, tar_to_samples_ops, decode_and_batch_ops, shuffle_initial_urls_list, shuffle_before_split_by_node_buffer_size, shuffle_before_split_by_worker_buffer_size, shuffle_after_tarfile_to_samples_buffer_size, shuffle_after_batching_buffer_size, ) elif (ds_type == DatasetTypes.VQAV2_TASK_FINETUNING) or (ds_type == DatasetTypes.DOCVQA): tar_to_samples_ops = [ wds.split_by_worker, tarfile_to_pair_samples(handler=log_and_continue), ] decode_and_batch_ops = [ decode_iqa_triplets(), wds.batched(batch_size, collation_fn=collate_dicts, partial=True), ] return _get_web_dataset( urls, tar_to_samples_ops, decode_and_batch_ops, shuffle_initial_urls_list, shuffle_before_split_by_node_buffer_size, shuffle_before_split_by_worker_buffer_size, shuffle_after_tarfile_to_samples_buffer_size, shuffle_after_batching_buffer_size, ) elif ds_type == DatasetTypes.SFT: tar_to_samples_ops = [ wds.split_by_worker, tarfile_to_webdocument_samples(), ] decode_and_batch_ops = [ collate_texts_and_images_webdocument(), decode_image_and_text_sft(), wds.batched(batch_size, collation_fn=collate_dicts, partial=True), ] return _get_web_dataset( urls, tar_to_samples_ops, decode_and_batch_ops, shuffle_initial_urls_list, shuffle_before_split_by_node_buffer_size, shuffle_before_split_by_worker_buffer_size, shuffle_after_tarfile_to_samples_buffer_size, shuffle_after_batching_buffer_size, ) else: raise ValueError(f"Unknown dataset type: {ds_type}")