arguments_classes/faster_whisper_stt_arguments.py (51 lines of code) (raw):

from dataclasses import dataclass, field @dataclass class FasterWhisperSTTHandlerArguments: faster_whisper_stt_model_name: str = field( default="tiny.en", metadata={ "help": """The pretrained Faster Whisper model to use. One of ('tiny', 'tiny.en', 'base', 'base.en', 'small', 'small.en', 'distil-small.en', 'medium', 'medium.en', 'distil-medium.en', 'large-v1', 'large-v2', 'large-v3', 'large', 'distil-large-v2', 'distil-large-v3'). Default is 'small'.""" }, ) faster_whisper_stt_device: str = field( default="auto", metadata={ "help": """The device type on which the model will run. One of ('cpu', 'cuda', 'auto'). Default is 'auto'.""" }, ) faster_whisper_stt_compute_type: str = field( default="auto", metadata={ "help": """The data type to use for computation. One of ('default', 'auto', 'int8', 'int8_float32', 'int8_float16', 'int8_bfloat16', 'int16', 'float16', 'float32', 'bfloat16') Default is 'auto'. Refer to 'https://opennmt.net/CTranslate2/quantization.html#quantize-on-model-loading'""" }, ) faster_whisper_stt_gen_max_new_tokens: int = field( default=128, metadata={ "help": "The maximum number of new tokens to generate. Default is 128." }, ) faster_whisper_stt_gen_beam_size: int = field( default=1, metadata={ "help": "The number of beams for beam search. Default is 1, implying greedy decoding." }, ) faster_whisper_stt_gen_return_timestamps: bool = field( default=False, metadata={ "help": "Whether to return timestamps with transcriptions. Default is False." }, ) faster_whisper_stt_gen_task: str = field( default="transcribe", metadata={ "help": "The task to perform, typically 'transcribe' for transcription. Default is 'transcribe'." }, ) faster_whisper_stt_gen_language: str = field( default="en", metadata={ "help": "The language of the speech to transcribe. Default is 'en' for English." }, )