backends/gaudi/server/text_generation_server/models/custom_modeling/qwen2_5_vl.py [51:381]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
)
import habana_frameworks.torch as htorch

# Copied from: https://github.com/huggingface/transformers/blob/main/src/transformers/models/qwen2_5_vl/processing_qwen2_5_vl.py
from typing import Union
from transformers.feature_extraction_utils import BatchFeature
from transformers.image_utils import ImageInput
from transformers.video_utils import VideoInput
from transformers.processing_utils import (
    ProcessingKwargs,
    ProcessorMixin,
    Unpack,
    VideosKwargs,
)
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput


class Qwen2_5_VLVideosProcessorKwargs(VideosKwargs, total=False):
    fps: Union[List[float], float]


class Qwen2_5_VLProcessorKwargs(ProcessingKwargs, total=False):
    videos_kwargs: Qwen2_5_VLVideosProcessorKwargs
    _defaults = {
        "text_kwargs": {
            "padding": False,
        },
        "videos_kwargs": {"fps": 2.0},
    }


class Qwen2_5_VLProcessor(ProcessorMixin):
    r"""
    Constructs a Qwen2.5-VL processor which wraps a Qwen2.5-VL image processor and a Qwen2 tokenizer into a single processor.
    [`Qwen2_5_VLProcessor`] offers all the functionalities of [`Qwen2VLImageProcessor`] and [`Qwen2TokenizerFast`]. See the
    [`~Qwen2_5_VLProcessor.__call__`] and [`~Qwen2_5_VLProcessor.decode`] for more information.
    Args:
        image_processor ([`Qwen2VLImageProcessor`], *optional*):
            The image processor is a required input.
        tokenizer ([`Qwen2TokenizerFast`], *optional*):
            The tokenizer is a required input.
        chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
            in a chat into a tokenizable string.
    """

    attributes = ["image_processor", "tokenizer"]
    valid_kwargs = ["chat_template"]

    image_processor_class = "AutoImageProcessor"
    tokenizer_class = ("Qwen2Tokenizer", "Qwen2TokenizerFast")

    def __init__(
        self, image_processor=None, tokenizer=None, chat_template=None, **kwargs
    ):
        self.image_token = (
            "<|image_pad|>"
            if not hasattr(tokenizer, "image_token")
            else tokenizer.image_token
        )
        self.video_token = (
            "<|video_pad|>"
            if not hasattr(tokenizer, "video_token")
            else tokenizer.video_token
        )
        super().__init__(image_processor, tokenizer, chat_template=chat_template)

    def __call__(
        self,
        images: ImageInput = None,
        text: Union[
            TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]
        ] = None,
        videos: VideoInput = None,
        **kwargs: Unpack[Qwen2_5_VLProcessorKwargs],
    ) -> BatchFeature:
        """
        Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
        and `kwargs` arguments to Qwen2TokenizerFast's [`~Qwen2TokenizerFast.__call__`] if `text` is not `None` to encode
        the text. To prepare the vision inputs, this method forwards the `vision_infos` and `kwrags` arguments to
        Qwen2VLImageProcessor's [`~Qwen2VLImageProcessor.__call__`] if `vision_infos` is not `None`.

        Args:
            images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
                The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
                tensor. Both channels-first and channels-last formats are supported.
            text (`str`, `List[str]`, `List[List[str]]`):
                The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
                (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
                `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
            videos (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`):
                The image or batch of videos to be prepared. Each video can be a 4D NumPy array or PyTorch
                tensor, or a nested list of 3D frames. Both channels-first and channels-last formats are supported.
            return_tensors (`str` or [`~utils.TensorType`], *optional*):
                If set, will return tensors of a particular framework. Acceptable values are:
                - `'tf'`: Return TensorFlow `tf.constant` objects.
                - `'pt'`: Return PyTorch `torch.Tensor` objects.
                - `'np'`: Return NumPy `np.ndarray` objects.
                - `'jax'`: Return JAX `jnp.ndarray` objects.

        Returns:
            [`BatchFeature`]: A [`BatchFeature`] with the following fields:

            - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
            - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
              `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
              `None`).
            - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
            - **pixel_values_videos** -- Pixel values of videos to be fed to a model. Returned when `videos` is not `None`.
            - **image_grid_thw** -- List of image 3D grid in LLM. Returned when `images` is not `None`.
            - **video_grid_thw** -- List of video 3D grid in LLM. Returned when `videos` is not `None`.
            - **second_per_grid_ts** -- List of video seconds per time grid. Returned when `videos` is not `None`.
        """
        output_kwargs = self._merge_kwargs(
            Qwen2_5_VLProcessorKwargs,
            tokenizer_init_kwargs=self.tokenizer.init_kwargs,
            **kwargs,
        )
        if images is not None:
            image_inputs = self.image_processor(
                images=images, videos=None, **output_kwargs["images_kwargs"]
            )
            image_grid_thw = image_inputs["image_grid_thw"]
        else:
            image_inputs = {}
            image_grid_thw = None

        if videos is not None:
            videos_inputs = self.image_processor(
                images=None, videos=videos, **output_kwargs["images_kwargs"]
            )
            video_grid_thw = videos_inputs["video_grid_thw"]

            fps = output_kwargs["videos_kwargs"].pop("fps", 2.0)
            if isinstance(fps, (int, float)):
                second_per_grid_ts = [
                    self.image_processor.temporal_patch_size / fps
                ] * len(video_grid_thw)
            elif hasattr(fps, "__len__") and len(fps) == len(video_grid_thw):
                second_per_grid_ts = [
                    self.image_processor.temporal_patch_size / tmp for tmp in fps
                ]
            else:
                raise ValueError(
                    f"The length of fps ({len(fps) if hasattr(fps, '__len__') else fps}) must be equal to the length of video_grid_thw ({len(video_grid_thw)}) or fps should be a single number."
                )
            videos_inputs.update({"second_per_grid_ts": second_per_grid_ts})

        else:
            videos_inputs = {}
            video_grid_thw = None

        if not isinstance(text, list):
            text = [text]

        if image_grid_thw is not None:
            merge_length = self.image_processor.merge_size**2
            index = 0
            for i in range(len(text)):
                while self.image_token in text[i]:
                    text[i] = text[i].replace(
                        self.image_token,
                        "<|placeholder|>"
                        * (image_grid_thw[index].prod() // merge_length),
                        1,
                    )
                    index += 1
                text[i] = text[i].replace("<|placeholder|>", self.image_token)

        if video_grid_thw is not None:
            merge_length = self.image_processor.merge_size**2
            index = 0
            for i in range(len(text)):
                while self.video_token in text[i]:
                    text[i] = text[i].replace(
                        self.video_token,
                        "<|placeholder|>"
                        * (video_grid_thw[index].prod() // merge_length),
                        1,
                    )
                    index += 1
                text[i] = text[i].replace("<|placeholder|>", self.video_token)

        text_inputs = self.tokenizer(text, **output_kwargs["text_kwargs"])

        return BatchFeature(data={**text_inputs, **image_inputs, **videos_inputs})

    def batch_decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
        refer to the docstring of this method for more information.
        """
        return self.tokenizer.batch_decode(*args, **kwargs)

    def decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
        the docstring of this method for more information.
        """
        return self.tokenizer.decode(*args, **kwargs)

    def post_process_image_text_to_text(self, generated_outputs):
        """
        Post-process the output of the model to decode the text.

        Args:
            generated_outputs (`torch.Tensor` or `np.ndarray`):
                The output of the model `generate` function. The output is expected to be a tensor of shape `(batch_size, sequence_length)`
                or `(sequence_length,)`.

        Returns:
            `List[str]`: The decoded text.
        """
        return self.tokenizer.batch_decode(
            generated_outputs,
            skip_special_tokens=True,
            clean_up_tokenization_spaces=False,
        )

    @property
    def model_input_names(self):
        tokenizer_input_names = self.tokenizer.model_input_names
        image_processor_input_names = self.image_processor.model_input_names
        names_from_processor = list(
            dict.fromkeys(tokenizer_input_names + image_processor_input_names)
        )
        return names_from_processor + ["second_per_grid_ts"]


# Copied from: https://github.com/huggingface/transformers/blob/main/src/transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py
class Qwen2_5_VLVisionConfig(PretrainedConfig):
    model_type = "qwen2_5_vl"
    base_config_key = "vision_config"

    def __init__(
        self,
        depth=32,
        hidden_size=3584,
        hidden_act="silu",
        intermediate_size=3420,
        num_heads=16,
        in_channels=3,
        patch_size=14,
        spatial_merge_size=2,
        spatial_patch_size=14,
        temporal_patch_size=2,
        tokens_per_second=4,
        window_size=112,
        out_hidden_size=3584,
        fullatt_block_indexes=[7, 15, 23, 31],
        **kwargs,
    ):
        super().__init__(**kwargs)

        self.depth = depth
        self.hidden_size = hidden_size
        self.hidden_act = hidden_act
        self.intermediate_size = intermediate_size
        self.num_heads = num_heads
        self.in_channels = in_channels
        self.patch_size = patch_size
        self.spatial_patch_size = spatial_patch_size
        self.spatial_merge_size = spatial_merge_size
        self.temporal_patch_size = temporal_patch_size
        self.tokens_per_second = tokens_per_second
        self.window_size = window_size
        self.fullatt_block_indexes = fullatt_block_indexes
        self.out_hidden_size = out_hidden_size


class Qwen2_5_VLConfig(PretrainedConfig):

    def __init__(
        self,
        vocab_size=152064,
        hidden_size=8192,
        intermediate_size=29568,
        num_hidden_layers=80,
        num_attention_heads=64,
        num_key_value_heads=8,
        hidden_act="silu",
        max_position_embeddings=32768,
        initializer_range=0.02,
        rms_norm_eps=1e-05,
        use_cache=True,
        tie_word_embeddings=False,
        rope_theta=1000000.0,
        use_sliding_window=False,
        sliding_window=4096,
        max_window_layers=80,
        attention_dropout=0.0,
        vision_config=None,
        rope_scaling=None,
        **kwargs,
    ):
        if vision_config is not None:
            self.vision_config = Qwen2_5_VLVisionConfig(**vision_config)

        self.vocab_size = vocab_size
        self.max_position_embeddings = max_position_embeddings
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.use_sliding_window = use_sliding_window
        self.sliding_window = sliding_window
        self.max_window_layers = max_window_layers

        # for backward compatibility
        if num_key_value_heads is None:
            num_key_value_heads = num_attention_heads

        self.num_key_value_heads = num_key_value_heads
        self.hidden_act = hidden_act
        self.initializer_range = initializer_range
        self.rms_norm_eps = rms_norm_eps
        self.use_cache = use_cache
        self.rope_theta = rope_theta
        self.attention_dropout = attention_dropout
        self.rope_scaling = rope_scaling

        # Validate the correctness of rotary position embeddings parameters
        # BC: if there is a 'type' field, move it to 'rope_type'.
        # and change type from 'mrope' to 'default' because `mrope` does defeault RoPE calculations
        # one can set it to "linear"/"dynamic" etc. to have scaled RoPE
        # TODO: @raushan update config in the hub
        if self.rope_scaling is not None and "type" in self.rope_scaling:
            if self.rope_scaling["type"] == "mrope":
                self.rope_scaling["type"] = "default"
            self.rope_scaling["rope_type"] = self.rope_scaling["type"]

        super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



server/text_generation_server/models/custom_modeling/qwen2_5_vl.py [48:375]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
)

# Copied from: https://github.com/huggingface/transformers/blob/main/src/transformers/models/qwen2_5_vl/processing_qwen2_5_vl.py
from typing import Union
from transformers.feature_extraction_utils import BatchFeature
from transformers.image_utils import ImageInput, VideoInput
from transformers.processing_utils import (
    ProcessingKwargs,
    ProcessorMixin,
    Unpack,
    VideosKwargs,
)
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput


class Qwen2_5_VLVideosProcessorKwargs(VideosKwargs, total=False):
    fps: Union[List[float], float]


class Qwen2_5_VLProcessorKwargs(ProcessingKwargs, total=False):
    videos_kwargs: Qwen2_5_VLVideosProcessorKwargs
    _defaults = {
        "text_kwargs": {
            "padding": False,
        },
        "videos_kwargs": {"fps": 2.0},
    }


class Qwen2_5_VLProcessor(ProcessorMixin):
    r"""
    Constructs a Qwen2.5-VL processor which wraps a Qwen2.5-VL image processor and a Qwen2 tokenizer into a single processor.
    [`Qwen2_5_VLProcessor`] offers all the functionalities of [`Qwen2VLImageProcessor`] and [`Qwen2TokenizerFast`]. See the
    [`~Qwen2_5_VLProcessor.__call__`] and [`~Qwen2_5_VLProcessor.decode`] for more information.
    Args:
        image_processor ([`Qwen2VLImageProcessor`], *optional*):
            The image processor is a required input.
        tokenizer ([`Qwen2TokenizerFast`], *optional*):
            The tokenizer is a required input.
        chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
            in a chat into a tokenizable string.
    """

    attributes = ["image_processor", "tokenizer"]
    valid_kwargs = ["chat_template"]

    image_processor_class = "AutoImageProcessor"
    tokenizer_class = ("Qwen2Tokenizer", "Qwen2TokenizerFast")

    def __init__(
        self, image_processor=None, tokenizer=None, chat_template=None, **kwargs
    ):
        self.image_token = (
            "<|image_pad|>"
            if not hasattr(tokenizer, "image_token")
            else tokenizer.image_token
        )
        self.video_token = (
            "<|video_pad|>"
            if not hasattr(tokenizer, "video_token")
            else tokenizer.video_token
        )
        super().__init__(image_processor, tokenizer, chat_template=chat_template)

    def __call__(
        self,
        images: ImageInput = None,
        text: Union[
            TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]
        ] = None,
        videos: VideoInput = None,
        **kwargs: Unpack[Qwen2_5_VLProcessorKwargs],
    ) -> BatchFeature:
        """
        Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
        and `kwargs` arguments to Qwen2TokenizerFast's [`~Qwen2TokenizerFast.__call__`] if `text` is not `None` to encode
        the text. To prepare the vision inputs, this method forwards the `vision_infos` and `kwrags` arguments to
        Qwen2VLImageProcessor's [`~Qwen2VLImageProcessor.__call__`] if `vision_infos` is not `None`.

        Args:
            images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
                The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
                tensor. Both channels-first and channels-last formats are supported.
            text (`str`, `List[str]`, `List[List[str]]`):
                The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
                (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
                `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
            videos (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`):
                The image or batch of videos to be prepared. Each video can be a 4D NumPy array or PyTorch
                tensor, or a nested list of 3D frames. Both channels-first and channels-last formats are supported.
            return_tensors (`str` or [`~utils.TensorType`], *optional*):
                If set, will return tensors of a particular framework. Acceptable values are:
                - `'tf'`: Return TensorFlow `tf.constant` objects.
                - `'pt'`: Return PyTorch `torch.Tensor` objects.
                - `'np'`: Return NumPy `np.ndarray` objects.
                - `'jax'`: Return JAX `jnp.ndarray` objects.

        Returns:
            [`BatchFeature`]: A [`BatchFeature`] with the following fields:

            - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
            - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
              `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
              `None`).
            - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
            - **pixel_values_videos** -- Pixel values of videos to be fed to a model. Returned when `videos` is not `None`.
            - **image_grid_thw** -- List of image 3D grid in LLM. Returned when `images` is not `None`.
            - **video_grid_thw** -- List of video 3D grid in LLM. Returned when `videos` is not `None`.
            - **second_per_grid_ts** -- List of video seconds per time grid. Returned when `videos` is not `None`.
        """
        output_kwargs = self._merge_kwargs(
            Qwen2_5_VLProcessorKwargs,
            tokenizer_init_kwargs=self.tokenizer.init_kwargs,
            **kwargs,
        )
        if images is not None:
            image_inputs = self.image_processor(
                images=images, videos=None, **output_kwargs["images_kwargs"]
            )
            image_grid_thw = image_inputs["image_grid_thw"]
        else:
            image_inputs = {}
            image_grid_thw = None

        if videos is not None:
            videos_inputs = self.image_processor(
                images=None, videos=videos, **output_kwargs["images_kwargs"]
            )
            video_grid_thw = videos_inputs["video_grid_thw"]

            fps = output_kwargs["videos_kwargs"].pop("fps", 2.0)
            if isinstance(fps, (int, float)):
                second_per_grid_ts = [
                    self.image_processor.temporal_patch_size / fps
                ] * len(video_grid_thw)
            elif hasattr(fps, "__len__") and len(fps) == len(video_grid_thw):
                second_per_grid_ts = [
                    self.image_processor.temporal_patch_size / tmp for tmp in fps
                ]
            else:
                raise ValueError(
                    f"The length of fps ({len(fps) if hasattr(fps, '__len__') else fps}) must be equal to the length of video_grid_thw ({len(video_grid_thw)}) or fps should be a single number."
                )
            videos_inputs.update({"second_per_grid_ts": second_per_grid_ts})

        else:
            videos_inputs = {}
            video_grid_thw = None

        if not isinstance(text, list):
            text = [text]

        if image_grid_thw is not None:
            merge_length = self.image_processor.merge_size**2
            index = 0
            for i in range(len(text)):
                while self.image_token in text[i]:
                    text[i] = text[i].replace(
                        self.image_token,
                        "<|placeholder|>"
                        * (image_grid_thw[index].prod() // merge_length),
                        1,
                    )
                    index += 1
                text[i] = text[i].replace("<|placeholder|>", self.image_token)

        if video_grid_thw is not None:
            merge_length = self.image_processor.merge_size**2
            index = 0
            for i in range(len(text)):
                while self.video_token in text[i]:
                    text[i] = text[i].replace(
                        self.video_token,
                        "<|placeholder|>"
                        * (video_grid_thw[index].prod() // merge_length),
                        1,
                    )
                    index += 1
                text[i] = text[i].replace("<|placeholder|>", self.video_token)

        text_inputs = self.tokenizer(text, **output_kwargs["text_kwargs"])

        return BatchFeature(data={**text_inputs, **image_inputs, **videos_inputs})

    def batch_decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
        refer to the docstring of this method for more information.
        """
        return self.tokenizer.batch_decode(*args, **kwargs)

    def decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
        the docstring of this method for more information.
        """
        return self.tokenizer.decode(*args, **kwargs)

    def post_process_image_text_to_text(self, generated_outputs):
        """
        Post-process the output of the model to decode the text.

        Args:
            generated_outputs (`torch.Tensor` or `np.ndarray`):
                The output of the model `generate` function. The output is expected to be a tensor of shape `(batch_size, sequence_length)`
                or `(sequence_length,)`.

        Returns:
            `List[str]`: The decoded text.
        """
        return self.tokenizer.batch_decode(
            generated_outputs,
            skip_special_tokens=True,
            clean_up_tokenization_spaces=False,
        )

    @property
    def model_input_names(self):
        tokenizer_input_names = self.tokenizer.model_input_names
        image_processor_input_names = self.image_processor.model_input_names
        names_from_processor = list(
            dict.fromkeys(tokenizer_input_names + image_processor_input_names)
        )
        return names_from_processor + ["second_per_grid_ts"]


# Copied from: https://github.com/huggingface/transformers/blob/main/src/transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py
class Qwen2_5_VLVisionConfig(PretrainedConfig):
    model_type = "qwen2_5_vl"
    base_config_key = "vision_config"

    def __init__(
        self,
        depth=32,
        hidden_size=3584,
        hidden_act="silu",
        intermediate_size=3420,
        num_heads=16,
        in_channels=3,
        patch_size=14,
        spatial_merge_size=2,
        spatial_patch_size=14,
        temporal_patch_size=2,
        tokens_per_second=4,
        window_size=112,
        out_hidden_size=3584,
        fullatt_block_indexes=[7, 15, 23, 31],
        **kwargs,
    ):
        super().__init__(**kwargs)

        self.depth = depth
        self.hidden_size = hidden_size
        self.hidden_act = hidden_act
        self.intermediate_size = intermediate_size
        self.num_heads = num_heads
        self.in_channels = in_channels
        self.patch_size = patch_size
        self.spatial_patch_size = spatial_patch_size
        self.spatial_merge_size = spatial_merge_size
        self.temporal_patch_size = temporal_patch_size
        self.tokens_per_second = tokens_per_second
        self.window_size = window_size
        self.fullatt_block_indexes = fullatt_block_indexes
        self.out_hidden_size = out_hidden_size


class Qwen2_5_VLConfig(PretrainedConfig):
    def __init__(
        self,
        vocab_size=152064,
        hidden_size=8192,
        intermediate_size=29568,
        num_hidden_layers=80,
        num_attention_heads=64,
        num_key_value_heads=8,
        hidden_act="silu",
        max_position_embeddings=32768,
        initializer_range=0.02,
        rms_norm_eps=1e-05,
        use_cache=True,
        tie_word_embeddings=False,
        rope_theta=1000000.0,
        use_sliding_window=False,
        sliding_window=4096,
        max_window_layers=80,
        attention_dropout=0.0,
        vision_config=None,
        rope_scaling=None,
        **kwargs,
    ):
        if vision_config is not None:
            self.vision_config = Qwen2_5_VLVisionConfig(**vision_config)

        self.vocab_size = vocab_size
        self.max_position_embeddings = max_position_embeddings
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.use_sliding_window = use_sliding_window
        self.sliding_window = sliding_window
        self.max_window_layers = max_window_layers

        # for backward compatibility
        if num_key_value_heads is None:
            num_key_value_heads = num_attention_heads

        self.num_key_value_heads = num_key_value_heads
        self.hidden_act = hidden_act
        self.initializer_range = initializer_range
        self.rms_norm_eps = rms_norm_eps
        self.use_cache = use_cache
        self.rope_theta = rope_theta
        self.attention_dropout = attention_dropout
        self.rope_scaling = rope_scaling

        # Validate the correctness of rotary position embeddings parameters
        # BC: if there is a 'type' field, move it to 'rope_type'.
        # and change type from 'mrope' to 'default' because `mrope` does defeault RoPE calculations
        # one can set it to "linear"/"dynamic" etc. to have scaled RoPE
        # TODO: @raushan update config in the hub
        if self.rope_scaling is not None and "type" in self.rope_scaling:
            if self.rope_scaling["type"] == "mrope":
                self.rope_scaling["type"] = "default"
            self.rope_scaling["rope_type"] = self.rope_scaling["type"]

        super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



