backends/gaudi/server/text_generation_server/models/custom_modeling/flash_deepseek_v2_modeling.py [47:158]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
class DeepseekV2Config(PretrainedConfig):
    def __init__(
        self,
        vocab_size=102400,
        hidden_size=4096,
        intermediate_size=11008,
        moe_intermediate_size=1407,
        num_hidden_layers=30,
        num_attention_heads=32,
        num_key_value_heads=32,
        n_shared_experts=2,
        n_routed_experts=160,
        ep_size=1,
        routed_scaling_factor=1.0,
        kv_lora_rank=512,
        q_lora_rank=1536,
        qk_rope_head_dim=64,
        v_head_dim=128,
        qk_nope_head_dim=128,
        topk_method="gready",
        n_group=8,
        topk_group=3,
        num_experts_per_tok=6,
        moe_layer_freq=1,
        first_k_dense_replace=0,
        norm_topk_prob=False,
        scoring_func="softmax",
        aux_loss_alpha=0.001,
        seq_aux=True,
        hidden_act="silu",
        max_position_embeddings=2048,
        initializer_range=0.02,
        rms_norm_eps=1e-6,
        use_cache=True,
        pad_token_id=None,
        bos_token_id=100000,
        eos_token_id=100001,
        pretraining_tp=1,
        tie_word_embeddings=False,
        rope_theta=10000.0,
        rope_scaling=None,
        attention_bias=False,
        attention_dropout=0.0,
        **kwargs,
    ):
        self.vocab_size = vocab_size
        self.max_position_embeddings = max_position_embeddings
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.moe_intermediate_size = moe_intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.n_shared_experts = n_shared_experts
        self.n_routed_experts = n_routed_experts
        self.ep_size = ep_size
        self.routed_scaling_factor = routed_scaling_factor
        self.kv_lora_rank = kv_lora_rank
        self.q_lora_rank = q_lora_rank
        self.qk_rope_head_dim = qk_rope_head_dim
        self.v_head_dim = v_head_dim
        self.qk_nope_head_dim = qk_nope_head_dim
        self.topk_method = topk_method
        self.n_group = n_group
        self.topk_group = topk_group
        self.num_experts_per_tok = num_experts_per_tok
        self.moe_layer_freq = moe_layer_freq
        self.first_k_dense_replace = first_k_dense_replace
        self.norm_topk_prob = norm_topk_prob
        self.scoring_func = scoring_func
        self.aux_loss_alpha = aux_loss_alpha
        self.seq_aux = seq_aux
        # for backward compatibility
        if num_key_value_heads is None:
            num_key_value_heads = num_attention_heads

        self.num_key_value_heads = num_key_value_heads
        self.hidden_act = hidden_act
        self.initializer_range = initializer_range
        self.rms_norm_eps = rms_norm_eps
        self.pretraining_tp = pretraining_tp
        self.use_cache = use_cache
        self.rope_theta = rope_theta
        self.rope_scaling = rope_scaling
        self.attention_bias = attention_bias
        self.attention_dropout = attention_dropout

        tie_word_embeddings = kwargs.pop("tie_word_embeddings", False)
        if tie_word_embeddings:
            raise ValueError(
                "tie_word_embeddings is not supported for Deepseek V2 models."
            )

        if ep_size != 1:
            raise ValueError(
                f"Currently only ep_size == 1 is supported for Deepseek V2 models, was {ep_size}"
            )

        super().__init__(
            pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            tie_word_embeddings=tie_word_embeddings,
            **kwargs,
        )


class DeepseekV2Attention(torch.nn.Module):
    def __init__(
        self,
        prefix: str,
        config,
        weights: Weights,
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



server/text_generation_server/models/custom_modeling/flash_deepseek_v2_modeling.py [51:162]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
class DeepseekV2Config(PretrainedConfig):
    def __init__(
        self,
        vocab_size=102400,
        hidden_size=4096,
        intermediate_size=11008,
        moe_intermediate_size=1407,
        num_hidden_layers=30,
        num_attention_heads=32,
        num_key_value_heads=32,
        n_shared_experts=2,
        n_routed_experts=160,
        ep_size=1,
        routed_scaling_factor=1.0,
        kv_lora_rank=512,
        q_lora_rank=1536,
        qk_rope_head_dim=64,
        v_head_dim=128,
        qk_nope_head_dim=128,
        topk_method="gready",
        n_group=8,
        topk_group=3,
        num_experts_per_tok=6,
        moe_layer_freq=1,
        first_k_dense_replace=0,
        norm_topk_prob=False,
        scoring_func="softmax",
        aux_loss_alpha=0.001,
        seq_aux=True,
        hidden_act="silu",
        max_position_embeddings=2048,
        initializer_range=0.02,
        rms_norm_eps=1e-6,
        use_cache=True,
        pad_token_id=None,
        bos_token_id=100000,
        eos_token_id=100001,
        pretraining_tp=1,
        tie_word_embeddings=False,
        rope_theta=10000.0,
        rope_scaling=None,
        attention_bias=False,
        attention_dropout=0.0,
        **kwargs,
    ):
        self.vocab_size = vocab_size
        self.max_position_embeddings = max_position_embeddings
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.moe_intermediate_size = moe_intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.n_shared_experts = n_shared_experts
        self.n_routed_experts = n_routed_experts
        self.ep_size = ep_size
        self.routed_scaling_factor = routed_scaling_factor
        self.kv_lora_rank = kv_lora_rank
        self.q_lora_rank = q_lora_rank
        self.qk_rope_head_dim = qk_rope_head_dim
        self.v_head_dim = v_head_dim
        self.qk_nope_head_dim = qk_nope_head_dim
        self.topk_method = topk_method
        self.n_group = n_group
        self.topk_group = topk_group
        self.num_experts_per_tok = num_experts_per_tok
        self.moe_layer_freq = moe_layer_freq
        self.first_k_dense_replace = first_k_dense_replace
        self.norm_topk_prob = norm_topk_prob
        self.scoring_func = scoring_func
        self.aux_loss_alpha = aux_loss_alpha
        self.seq_aux = seq_aux
        # for backward compatibility
        if num_key_value_heads is None:
            num_key_value_heads = num_attention_heads

        self.num_key_value_heads = num_key_value_heads
        self.hidden_act = hidden_act
        self.initializer_range = initializer_range
        self.rms_norm_eps = rms_norm_eps
        self.pretraining_tp = pretraining_tp
        self.use_cache = use_cache
        self.rope_theta = rope_theta
        self.rope_scaling = rope_scaling
        self.attention_bias = attention_bias
        self.attention_dropout = attention_dropout

        tie_word_embeddings = kwargs.pop("tie_word_embeddings", False)
        if tie_word_embeddings:
            raise ValueError(
                "tie_word_embeddings is not supported for Deepseek V2 models."
            )

        if ep_size != 1:
            raise ValueError(
                f"Currently only ep_size == 1 is supported for Deepseek V2 models, was {ep_size}"
            )

        super().__init__(
            pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            tie_word_embeddings=tie_word_embeddings,
            **kwargs,
        )


class DeepseekV2Attention(torch.nn.Module):
    def __init__(
        self,
        prefix: str,
        config,
        weights: Weights,
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



