backends/gaudi/server/text_generation_server/models/seq2seq_lm.py [82:556]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        )

    @classmethod
    def from_pb(
        cls,
        pb: generate_pb2.Batch,
        tokenizer: PreTrainedTokenizerBase,
        dtype: torch.dtype,
        device: torch.device,
    ) -> "Seq2SeqLMBatch":
        """Convert a text_generation_server.v1.Batch protobuf to a Seq2SeqLMBatch"""
        inputs = []
        next_token_choosers = []
        stopping_criterias = []
        top_n_tokens = []
        decoder_input_lengths = []
        prefix_offsets = []
        read_offsets = []
        requests_idx_mapping = {}

        # Parse batch
        max_truncation = 0
        padding_right_offset = 0
        max_decode_tokens = 0
        for i, r in enumerate(pb.requests):
            inputs.append(concat_text_chunks(r.input_chunks.chunks))
            requests_idx_mapping[r.id] = i
            decoder_input_lengths.append(1)
            next_token_choosers.append(
                NextTokenChooser.from_pb(r.parameters, device, tokenizer)
            )
            stopping_criteria = StoppingCriteria.from_pb(
                r.stopping_parameters, tokenizer
            )
            stopping_criterias.append(stopping_criteria)
            top_n_tokens.append(r.top_n_tokens)
            max_truncation = max(max_truncation, r.truncate)
            max_decode_tokens += stopping_criteria.max_new_tokens
            padding_right_offset = max(
                padding_right_offset, stopping_criteria.max_new_tokens
            )

        # Tokenize batch
        tokenized_inputs = tokenizer(
            inputs,
            return_tensors="pt",
            padding=True,
            return_token_type_ids=False,
            truncation=True,
            max_length=max_truncation,
        ).to(device)

        input_lengths = tokenized_inputs["attention_mask"].sum(1)
        max_input_length = input_lengths.max()

        # Decoder sequence only contains the bos_token
        decoder_input_ids = (
            torch.tensor(tokenizer.bos_token_id, device=device)
            .repeat(len(pb.requests))
            .view(-1, 1)
        )
        for _ in pb.requests:
            prefix_offsets.append(0)
            read_offsets.append(1)
        all_decoder_input_ids = decoder_input_ids.view(-1).split(1)
        top_n_tokens_tensor = torch.tensor(
            top_n_tokens, device=device, dtype=torch.int64
        )

        max_tokens = len(inputs) * (max_input_length + max_decode_tokens)

        return cls(
            batch_id=pb.id,
            requests=pb.requests,
            requests_idx_mapping=requests_idx_mapping,
            input_ids=tokenized_inputs["input_ids"],
            attention_mask=tokenized_inputs["attention_mask"],
            decoder_input_ids=decoder_input_ids,
            all_decoder_input_ids=list(all_decoder_input_ids),
            decoder_attention_mask=None,
            encoder_last_hidden_state=None,
            past_key_values=None,
            input_lengths=input_lengths.tolist(),
            decoder_input_lengths=decoder_input_lengths,
            prefix_offsets=prefix_offsets,
            read_offsets=read_offsets,
            next_token_choosers=next_token_choosers,
            stopping_criterias=stopping_criterias,
            top_n_tokens=top_n_tokens,
            top_n_tokens_tensor=top_n_tokens_tensor,
            max_input_length=max_input_length.item(),
            max_decoder_input_length=1,
            padding_right_offset=padding_right_offset,
            max_tokens=max_tokens,
        )

    @tracer.start_as_current_span("filter")
    def filter(self, request_ids: List[int]) -> Optional["Seq2SeqLMBatch"]:
        if len(request_ids) == 0:
            raise ValueError("Batch must have at least one request")
        if len(request_ids) == len(self):
            return self

        keep_indices = []

        # New values after filtering
        requests_idx_mapping = {}
        requests = []
        input_lengths = []
        decoder_input_lengths = []
        prefix_offsets = []
        read_offsets = []

        all_decoder_input_ids = []

        next_token_choosers = []
        stopping_criterias = []
        top_n_tokens = []

        max_input_length = 0
        max_decoder_input_length = 0
        padding_right_offset = 0

        total_remaining_decode_tokens = 0

        for i, request_id in enumerate(request_ids):
            idx = self.requests_idx_mapping[request_id]
            requests_idx_mapping[request_id] = i
            keep_indices.append(idx)

            requests.append(self.requests[idx])
            prefix_offsets.append(self.prefix_offsets[idx])
            read_offsets.append(self.read_offsets[idx])

            all_decoder_input_ids.append(self.all_decoder_input_ids[idx])

            request_input_length = self.input_lengths[idx]
            input_lengths.append(request_input_length)
            max_input_length = max(max_input_length, request_input_length)

            request_decoder_input_length = self.decoder_input_lengths[idx]
            decoder_input_lengths.append(request_decoder_input_length)
            max_decoder_input_length = max(
                max_decoder_input_length, request_decoder_input_length
            )

            next_token_choosers.append(self.next_token_choosers[idx])
            stopping_criteria = self.stopping_criterias[idx]
            stopping_criterias.append(stopping_criteria)
            top_n_tokens.append(self.top_n_tokens[idx])
            remaining_decode_tokens = (
                stopping_criteria.max_new_tokens - stopping_criteria.current_tokens
            )
            total_remaining_decode_tokens += remaining_decode_tokens
            padding_right_offset = max(padding_right_offset, remaining_decode_tokens)

        # Apply indices to input_ids, attention mask, past key values and other items that need to be cached
        self.decoder_input_ids = self.decoder_input_ids[keep_indices]
        self.attention_mask = self.attention_mask[keep_indices, -max_input_length:]
        if self.decoder_attention_mask is not None:
            self.decoder_attention_mask = self.decoder_attention_mask[
                keep_indices,
                -(self.padding_right_offset + max_decoder_input_length) : (
                    self.decoder_attention_mask.shape[1] - self.padding_right_offset
                )
                + padding_right_offset,
            ]

        self.encoder_last_hidden_state = self.encoder_last_hidden_state[
            keep_indices, -max_input_length:
        ]

        # Ensure that past_key_values tensors can be updated in-place
        if type(self.past_key_values[0]) is tuple:
            self.past_key_values = [
                [t for t in layer] for layer in self.past_key_values
            ]

        decoder_past_seq_len = max_decoder_input_length - 1
        for layer in self.past_key_values:
            layer[0] = layer[0][keep_indices, :, -decoder_past_seq_len:]
            layer[1] = layer[1][keep_indices, :, -decoder_past_seq_len:]
            layer[2] = layer[2][keep_indices, :, -max_input_length:]
            layer[3] = layer[3][keep_indices, :, -max_input_length:]

        top_n_tokens_tensor = self.top_n_tokens_tensor[keep_indices]
        max_tokens = (
            len(request_ids) * (max_input_length + max_decoder_input_length)
            + remaining_decode_tokens
        )

        self.requests = requests
        self.requests_idx_mapping = requests_idx_mapping
        self.input_ids = None
        self.all_decoder_input_ids = all_decoder_input_ids
        self.input_lengths = input_lengths
        self.decoder_input_lengths = decoder_input_lengths
        self.prefix_offsets = prefix_offsets
        self.read_offsets = read_offsets
        self.next_token_choosers = next_token_choosers
        self.stopping_criterias = stopping_criterias
        self.top_n_tokens = top_n_tokens
        self.top_n_tokens_tensor = top_n_tokens_tensor
        self.max_input_length = max_input_length
        self.max_decoder_input_length = max_decoder_input_length
        self.padding_right_offset = padding_right_offset
        self.max_tokens = max_tokens

        return self

    @classmethod
    @tracer.start_as_current_span("concatenate")
    def concatenate(cls, batches: List["Seq2SeqLMBatch"]) -> "Seq2SeqLMBatch":
        """Concatenate multiple batches together by padding internal torch tensors"""

        # Used for padding
        total_batch_size = 0
        max_input_length = 0
        max_decoder_input_length = 0
        padding_right_offset = 0
        for batch in batches:
            total_batch_size += len(batch)
            max_input_length = max(max_input_length, batch.max_input_length)
            max_decoder_input_length = max(
                max_decoder_input_length, batch.max_decoder_input_length
            )
            padding_right_offset = max(padding_right_offset, batch.padding_right_offset)

        # Batch attributes
        requests = []
        requests_idx_mapping = {}
        all_decoder_input_ids = []
        input_lengths = []
        decoder_input_lengths = []
        prefix_offsets = []
        read_offsets = []
        next_token_choosers = []
        stopping_criterias = []
        top_n_tokens = []
        max_tokens = 0

        # Batch tensors
        attention_mask = None
        decoder_input_ids = None
        decoder_attention_mask = None
        encoder_last_hidden_state = None
        top_n_tokens_tensor = None
        past_key_values = []

        # Used for slicing correctly inside the tensors
        # Equivalent to a cumsum on batch sizes
        start_index = 0

        for i, batch in enumerate(batches):
            # Extend all list attributes
            requests.extend(batch.requests)
            all_decoder_input_ids.extend(batch.all_decoder_input_ids)
            input_lengths.extend(batch.input_lengths)
            decoder_input_lengths.extend(batch.decoder_input_lengths)
            prefix_offsets.extend(batch.prefix_offsets)
            read_offsets.extend(batch.read_offsets)
            next_token_choosers.extend(batch.next_token_choosers)
            stopping_criterias.extend(batch.stopping_criterias)
            top_n_tokens.extend(batch.top_n_tokens)

            if i == 0:
                requests_idx_mapping = batch.requests_idx_mapping
            else:
                # We need to offset the mapping for each batch by the cumulative batch size
                for k, v in batch.requests_idx_mapping.items():
                    requests_idx_mapping[k] = v + start_index

            # Slicing end index for this batch
            end_index = start_index + len(batch)

            # We only concatenate batches that did at least one step
            if batch.encoder_last_hidden_state is None:
                raise ValueError("Batch encoder_last_hidden_state cannot be None")

            # Create padded tensor
            if attention_mask is None:
                attention_mask = batch.attention_mask.new_zeros(
                    (total_batch_size, max_input_length),
                )
            # Copy to correct indices
            attention_mask[start_index:end_index, -batch.max_input_length :] = (
                batch.attention_mask[:, -batch.max_input_length :]
            )

            # Create padded tensor
            if decoder_input_ids is None:
                decoder_input_ids = batch.decoder_input_ids.new_zeros(
                    (total_batch_size, 1),
                )
            # Copy to correct indices
            decoder_input_ids[start_index:end_index] = batch.decoder_input_ids

            # Create padded tensor
            if decoder_attention_mask is None:
                # As decoder_attention_mask might not exist, we use `batch.attention_mask` for device here
                decoder_attention_mask = batch.attention_mask.new_zeros(
                    (total_batch_size, max_decoder_input_length + padding_right_offset),
                )
            # If the decoder mask does not exist yet, all generations started at the same time and we never concatenated
            # this batch. All generations are of length `batch.max_decoder_input_length`.
            left_offset = max_decoder_input_length - batch.max_decoder_input_length
            if batch.decoder_attention_mask is None:
                decoder_attention_mask[
                    start_index:end_index,
                    left_offset:-padding_right_offset,
                ] = 1
            # If it exists, we need to index
            else:
                batch_left_offset = (
                    batch.decoder_attention_mask.shape[1]
                    - batch.max_decoder_input_length
                    - batch.padding_right_offset
                )
                decoder_attention_mask[
                    start_index:end_index,
                    left_offset:-padding_right_offset,
                ] = batch.decoder_attention_mask[
                    :,
                    batch_left_offset : -batch.padding_right_offset,
                ]

            # Create padded tensor
            if encoder_last_hidden_state is None:
                encoder_last_hidden_state = batch.encoder_last_hidden_state.new_zeros(
                    (
                        total_batch_size,
                        max_input_length,
                        batch.encoder_last_hidden_state.shape[-1],
                    ),
                )

            if top_n_tokens_tensor is None:
                top_n_tokens_tensor = batches[0].top_n_tokens_tensor.new_zeros(
                    total_batch_size,
                )
            top_n_tokens_tensor[start_index:end_index] = batch.top_n_tokens_tensor

            # Copy to correct indices
            encoder_last_hidden_state[
                start_index:end_index, -batch.max_input_length :, :
            ] = batch.encoder_last_hidden_state[:, -batch.max_input_length :, :]
            batch.encoder_last_hidden_state = None

            # Ensure that we can update tensors in-place
            if isinstance(batch.past_key_values[0], tuple):
                batch.past_key_values = [
                    [t for t in layer] for layer in batch.past_key_values
                ]

            # Add eventual padding tokens that were added while concatenating
            max_tokens += batch.max_tokens + (
                max_input_length
                - batch.max_input_length
                + max_decoder_input_length
                - batch.max_decoder_input_length
            ) * len(batch)

            start_index = end_index

        # Determine shapes for new past kv tensors
        first_past_kvs = batches[0].past_key_values
        _, num_heads, _, head_dim = first_past_kvs[0][0].shape

        padded_dec_t_shape = (
            total_batch_size,
            num_heads,
            (max_decoder_input_length - 1),
            head_dim,
        )

        padded_enc_t_shape = (
            total_batch_size,
            num_heads,
            max_input_length,
            head_dim,
        )

        # Iterate over attention layers
        for j in range(len(first_past_kvs)):
            past_key_values.append([])

            # Decoder past
            for k in range(0, 2):
                # Initialize tensors
                padded_past_values = first_past_kvs[j][k].new_zeros(padded_dec_t_shape)
                past_key_values[j].append(padded_past_values)

                start_index = 0
                for batch in batches:
                    t = batch.past_key_values[j][k]
                    # Clear reference to the original tensor
                    batch.past_key_values[j][k] = None
                    # Slicing end index for this batch
                    end_index = start_index + len(batch)
                    # We slice the past keys and values to remove the padding from previous batches
                    past_seq_len = batch.max_decoder_input_length - 1
                    padded_past_values[start_index:end_index, :, -past_seq_len:, :] = t[
                        :, :, -past_seq_len:, :
                    ]
                    del t

                    start_index = end_index

            # Encoder past
            for k in range(2, 4):
                # Initialize tensors
                padded_past_values = first_past_kvs[j][k].new_zeros(padded_enc_t_shape)
                past_key_values[j].append(padded_past_values)

                start_index = 0
                for batch in batches:
                    t = batch.past_key_values[j][k]
                    # Clear reference to the original tensor
                    batch.past_key_values[j][k] = None
                    # Slicing end index for this batch
                    end_index = start_index + len(batch)
                    # We slice the past keys and values to remove the padding from previous batches
                    padded_past_values[
                        start_index:end_index, :, -batch.max_input_length :, :
                    ] = t[:, :, -batch.max_input_length :, :]
                    del t

                    start_index = end_index

        return cls(
            batch_id=batches[0].batch_id,
            requests=requests,
            requests_idx_mapping=requests_idx_mapping,
            input_ids=None,
            attention_mask=attention_mask,
            decoder_input_ids=decoder_input_ids,
            all_decoder_input_ids=all_decoder_input_ids,
            decoder_attention_mask=decoder_attention_mask,
            encoder_last_hidden_state=encoder_last_hidden_state,
            past_key_values=past_key_values,
            input_lengths=input_lengths,
            decoder_input_lengths=decoder_input_lengths,
            prefix_offsets=prefix_offsets,
            read_offsets=read_offsets,
            next_token_choosers=next_token_choosers,
            stopping_criterias=stopping_criterias,
            top_n_tokens=top_n_tokens,
            top_n_tokens_tensor=top_n_tokens_tensor,
            max_input_length=max_input_length,
            max_decoder_input_length=max_decoder_input_length,
            padding_right_offset=padding_right_offset,
            max_tokens=max_tokens,
        )

    def __len__(self):
        return len(self.requests)


class Seq2SeqLM(Model):
    def __init__(
        self,
        model_id: str,
        model_class,
        revision: Optional[str] = None,
        quantize: Optional[str] = None,
        speculator: Optional[str] = None,
        dtype: Optional[torch.dtype] = None,
        default_dtype=torch.float16,
        trust_remote_code: bool = False,
        config_class=AutoConfig,
        tokenizer_class=AutoTokenizer,
        aliases=None,
    ):
        self.quantize = quantize
        self.process_group, rank, world_size = initialize_torch_distributed()
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



server/text_generation_server/models/seq2seq_lm.py [84:558]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        )

    @classmethod
    def from_pb(
        cls,
        pb: generate_pb2.Batch,
        tokenizer: PreTrainedTokenizerBase,
        dtype: torch.dtype,
        device: torch.device,
    ) -> "Seq2SeqLMBatch":
        """Convert a text_generation_server.v1.Batch protobuf to a Seq2SeqLMBatch"""
        inputs = []
        next_token_choosers = []
        stopping_criterias = []
        top_n_tokens = []
        decoder_input_lengths = []
        prefix_offsets = []
        read_offsets = []
        requests_idx_mapping = {}

        # Parse batch
        max_truncation = 0
        padding_right_offset = 0
        max_decode_tokens = 0
        for i, r in enumerate(pb.requests):
            inputs.append(concat_text_chunks(r.input_chunks.chunks))
            requests_idx_mapping[r.id] = i
            decoder_input_lengths.append(1)
            next_token_choosers.append(
                NextTokenChooser.from_pb(r.parameters, device, tokenizer)
            )
            stopping_criteria = StoppingCriteria.from_pb(
                r.stopping_parameters, tokenizer
            )
            stopping_criterias.append(stopping_criteria)
            top_n_tokens.append(r.top_n_tokens)
            max_truncation = max(max_truncation, r.truncate)
            max_decode_tokens += stopping_criteria.max_new_tokens
            padding_right_offset = max(
                padding_right_offset, stopping_criteria.max_new_tokens
            )

        # Tokenize batch
        tokenized_inputs = tokenizer(
            inputs,
            return_tensors="pt",
            padding=True,
            return_token_type_ids=False,
            truncation=True,
            max_length=max_truncation,
        ).to(device)

        input_lengths = tokenized_inputs["attention_mask"].sum(1)
        max_input_length = input_lengths.max()

        # Decoder sequence only contains the bos_token
        decoder_input_ids = (
            torch.tensor(tokenizer.bos_token_id, device=device)
            .repeat(len(pb.requests))
            .view(-1, 1)
        )
        for _ in pb.requests:
            prefix_offsets.append(0)
            read_offsets.append(1)
        all_decoder_input_ids = decoder_input_ids.view(-1).split(1)
        top_n_tokens_tensor = torch.tensor(
            top_n_tokens, device=device, dtype=torch.int64
        )

        max_tokens = len(inputs) * (max_input_length + max_decode_tokens)

        return cls(
            batch_id=pb.id,
            requests=pb.requests,
            requests_idx_mapping=requests_idx_mapping,
            input_ids=tokenized_inputs["input_ids"],
            attention_mask=tokenized_inputs["attention_mask"],
            decoder_input_ids=decoder_input_ids,
            all_decoder_input_ids=list(all_decoder_input_ids),
            decoder_attention_mask=None,
            encoder_last_hidden_state=None,
            past_key_values=None,
            input_lengths=input_lengths.tolist(),
            decoder_input_lengths=decoder_input_lengths,
            prefix_offsets=prefix_offsets,
            read_offsets=read_offsets,
            next_token_choosers=next_token_choosers,
            stopping_criterias=stopping_criterias,
            top_n_tokens=top_n_tokens,
            top_n_tokens_tensor=top_n_tokens_tensor,
            max_input_length=max_input_length.item(),
            max_decoder_input_length=1,
            padding_right_offset=padding_right_offset,
            max_tokens=max_tokens,
        )

    @tracer.start_as_current_span("filter")
    def filter(self, request_ids: List[int]) -> Optional["Seq2SeqLMBatch"]:
        if len(request_ids) == 0:
            raise ValueError("Batch must have at least one request")
        if len(request_ids) == len(self):
            return self

        keep_indices = []

        # New values after filtering
        requests_idx_mapping = {}
        requests = []
        input_lengths = []
        decoder_input_lengths = []
        prefix_offsets = []
        read_offsets = []

        all_decoder_input_ids = []

        next_token_choosers = []
        stopping_criterias = []
        top_n_tokens = []

        max_input_length = 0
        max_decoder_input_length = 0
        padding_right_offset = 0

        total_remaining_decode_tokens = 0

        for i, request_id in enumerate(request_ids):
            idx = self.requests_idx_mapping[request_id]
            requests_idx_mapping[request_id] = i
            keep_indices.append(idx)

            requests.append(self.requests[idx])
            prefix_offsets.append(self.prefix_offsets[idx])
            read_offsets.append(self.read_offsets[idx])

            all_decoder_input_ids.append(self.all_decoder_input_ids[idx])

            request_input_length = self.input_lengths[idx]
            input_lengths.append(request_input_length)
            max_input_length = max(max_input_length, request_input_length)

            request_decoder_input_length = self.decoder_input_lengths[idx]
            decoder_input_lengths.append(request_decoder_input_length)
            max_decoder_input_length = max(
                max_decoder_input_length, request_decoder_input_length
            )

            next_token_choosers.append(self.next_token_choosers[idx])
            stopping_criteria = self.stopping_criterias[idx]
            stopping_criterias.append(stopping_criteria)
            top_n_tokens.append(self.top_n_tokens[idx])
            remaining_decode_tokens = (
                stopping_criteria.max_new_tokens - stopping_criteria.current_tokens
            )
            total_remaining_decode_tokens += remaining_decode_tokens
            padding_right_offset = max(padding_right_offset, remaining_decode_tokens)

        # Apply indices to input_ids, attention mask, past key values and other items that need to be cached
        self.decoder_input_ids = self.decoder_input_ids[keep_indices]
        self.attention_mask = self.attention_mask[keep_indices, -max_input_length:]
        if self.decoder_attention_mask is not None:
            self.decoder_attention_mask = self.decoder_attention_mask[
                keep_indices,
                -(self.padding_right_offset + max_decoder_input_length) : (
                    self.decoder_attention_mask.shape[1] - self.padding_right_offset
                )
                + padding_right_offset,
            ]

        self.encoder_last_hidden_state = self.encoder_last_hidden_state[
            keep_indices, -max_input_length:
        ]

        # Ensure that past_key_values tensors can be updated in-place
        if type(self.past_key_values[0]) is tuple:
            self.past_key_values = [
                [t for t in layer] for layer in self.past_key_values
            ]

        decoder_past_seq_len = max_decoder_input_length - 1
        for layer in self.past_key_values:
            layer[0] = layer[0][keep_indices, :, -decoder_past_seq_len:]
            layer[1] = layer[1][keep_indices, :, -decoder_past_seq_len:]
            layer[2] = layer[2][keep_indices, :, -max_input_length:]
            layer[3] = layer[3][keep_indices, :, -max_input_length:]

        top_n_tokens_tensor = self.top_n_tokens_tensor[keep_indices]
        max_tokens = (
            len(request_ids) * (max_input_length + max_decoder_input_length)
            + remaining_decode_tokens
        )

        self.requests = requests
        self.requests_idx_mapping = requests_idx_mapping
        self.input_ids = None
        self.all_decoder_input_ids = all_decoder_input_ids
        self.input_lengths = input_lengths
        self.decoder_input_lengths = decoder_input_lengths
        self.prefix_offsets = prefix_offsets
        self.read_offsets = read_offsets
        self.next_token_choosers = next_token_choosers
        self.stopping_criterias = stopping_criterias
        self.top_n_tokens = top_n_tokens
        self.top_n_tokens_tensor = top_n_tokens_tensor
        self.max_input_length = max_input_length
        self.max_decoder_input_length = max_decoder_input_length
        self.padding_right_offset = padding_right_offset
        self.max_tokens = max_tokens

        return self

    @classmethod
    @tracer.start_as_current_span("concatenate")
    def concatenate(cls, batches: List["Seq2SeqLMBatch"]) -> "Seq2SeqLMBatch":
        """Concatenate multiple batches together by padding internal torch tensors"""

        # Used for padding
        total_batch_size = 0
        max_input_length = 0
        max_decoder_input_length = 0
        padding_right_offset = 0
        for batch in batches:
            total_batch_size += len(batch)
            max_input_length = max(max_input_length, batch.max_input_length)
            max_decoder_input_length = max(
                max_decoder_input_length, batch.max_decoder_input_length
            )
            padding_right_offset = max(padding_right_offset, batch.padding_right_offset)

        # Batch attributes
        requests = []
        requests_idx_mapping = {}
        all_decoder_input_ids = []
        input_lengths = []
        decoder_input_lengths = []
        prefix_offsets = []
        read_offsets = []
        next_token_choosers = []
        stopping_criterias = []
        top_n_tokens = []
        max_tokens = 0

        # Batch tensors
        attention_mask = None
        decoder_input_ids = None
        decoder_attention_mask = None
        encoder_last_hidden_state = None
        top_n_tokens_tensor = None
        past_key_values = []

        # Used for slicing correctly inside the tensors
        # Equivalent to a cumsum on batch sizes
        start_index = 0

        for i, batch in enumerate(batches):
            # Extend all list attributes
            requests.extend(batch.requests)
            all_decoder_input_ids.extend(batch.all_decoder_input_ids)
            input_lengths.extend(batch.input_lengths)
            decoder_input_lengths.extend(batch.decoder_input_lengths)
            prefix_offsets.extend(batch.prefix_offsets)
            read_offsets.extend(batch.read_offsets)
            next_token_choosers.extend(batch.next_token_choosers)
            stopping_criterias.extend(batch.stopping_criterias)
            top_n_tokens.extend(batch.top_n_tokens)

            if i == 0:
                requests_idx_mapping = batch.requests_idx_mapping
            else:
                # We need to offset the mapping for each batch by the cumulative batch size
                for k, v in batch.requests_idx_mapping.items():
                    requests_idx_mapping[k] = v + start_index

            # Slicing end index for this batch
            end_index = start_index + len(batch)

            # We only concatenate batches that did at least one step
            if batch.encoder_last_hidden_state is None:
                raise ValueError("Batch encoder_last_hidden_state cannot be None")

            # Create padded tensor
            if attention_mask is None:
                attention_mask = batch.attention_mask.new_zeros(
                    (total_batch_size, max_input_length),
                )
            # Copy to correct indices
            attention_mask[start_index:end_index, -batch.max_input_length :] = (
                batch.attention_mask[:, -batch.max_input_length :]
            )

            # Create padded tensor
            if decoder_input_ids is None:
                decoder_input_ids = batch.decoder_input_ids.new_zeros(
                    (total_batch_size, 1),
                )
            # Copy to correct indices
            decoder_input_ids[start_index:end_index] = batch.decoder_input_ids

            # Create padded tensor
            if decoder_attention_mask is None:
                # As decoder_attention_mask might not exist, we use `batch.attention_mask` for device here
                decoder_attention_mask = batch.attention_mask.new_zeros(
                    (total_batch_size, max_decoder_input_length + padding_right_offset),
                )
            # If the decoder mask does not exist yet, all generations started at the same time and we never concatenated
            # this batch. All generations are of length `batch.max_decoder_input_length`.
            left_offset = max_decoder_input_length - batch.max_decoder_input_length
            if batch.decoder_attention_mask is None:
                decoder_attention_mask[
                    start_index:end_index,
                    left_offset:-padding_right_offset,
                ] = 1
            # If it exists, we need to index
            else:
                batch_left_offset = (
                    batch.decoder_attention_mask.shape[1]
                    - batch.max_decoder_input_length
                    - batch.padding_right_offset
                )
                decoder_attention_mask[
                    start_index:end_index,
                    left_offset:-padding_right_offset,
                ] = batch.decoder_attention_mask[
                    :,
                    batch_left_offset : -batch.padding_right_offset,
                ]

            # Create padded tensor
            if encoder_last_hidden_state is None:
                encoder_last_hidden_state = batch.encoder_last_hidden_state.new_zeros(
                    (
                        total_batch_size,
                        max_input_length,
                        batch.encoder_last_hidden_state.shape[-1],
                    ),
                )

            if top_n_tokens_tensor is None:
                top_n_tokens_tensor = batches[0].top_n_tokens_tensor.new_zeros(
                    total_batch_size,
                )
            top_n_tokens_tensor[start_index:end_index] = batch.top_n_tokens_tensor

            # Copy to correct indices
            encoder_last_hidden_state[
                start_index:end_index, -batch.max_input_length :, :
            ] = batch.encoder_last_hidden_state[:, -batch.max_input_length :, :]
            batch.encoder_last_hidden_state = None

            # Ensure that we can update tensors in-place
            if isinstance(batch.past_key_values[0], tuple):
                batch.past_key_values = [
                    [t for t in layer] for layer in batch.past_key_values
                ]

            # Add eventual padding tokens that were added while concatenating
            max_tokens += batch.max_tokens + (
                max_input_length
                - batch.max_input_length
                + max_decoder_input_length
                - batch.max_decoder_input_length
            ) * len(batch)

            start_index = end_index

        # Determine shapes for new past kv tensors
        first_past_kvs = batches[0].past_key_values
        _, num_heads, _, head_dim = first_past_kvs[0][0].shape

        padded_dec_t_shape = (
            total_batch_size,
            num_heads,
            (max_decoder_input_length - 1),
            head_dim,
        )

        padded_enc_t_shape = (
            total_batch_size,
            num_heads,
            max_input_length,
            head_dim,
        )

        # Iterate over attention layers
        for j in range(len(first_past_kvs)):
            past_key_values.append([])

            # Decoder past
            for k in range(0, 2):
                # Initialize tensors
                padded_past_values = first_past_kvs[j][k].new_zeros(padded_dec_t_shape)
                past_key_values[j].append(padded_past_values)

                start_index = 0
                for batch in batches:
                    t = batch.past_key_values[j][k]
                    # Clear reference to the original tensor
                    batch.past_key_values[j][k] = None
                    # Slicing end index for this batch
                    end_index = start_index + len(batch)
                    # We slice the past keys and values to remove the padding from previous batches
                    past_seq_len = batch.max_decoder_input_length - 1
                    padded_past_values[start_index:end_index, :, -past_seq_len:, :] = t[
                        :, :, -past_seq_len:, :
                    ]
                    del t

                    start_index = end_index

            # Encoder past
            for k in range(2, 4):
                # Initialize tensors
                padded_past_values = first_past_kvs[j][k].new_zeros(padded_enc_t_shape)
                past_key_values[j].append(padded_past_values)

                start_index = 0
                for batch in batches:
                    t = batch.past_key_values[j][k]
                    # Clear reference to the original tensor
                    batch.past_key_values[j][k] = None
                    # Slicing end index for this batch
                    end_index = start_index + len(batch)
                    # We slice the past keys and values to remove the padding from previous batches
                    padded_past_values[
                        start_index:end_index, :, -batch.max_input_length :, :
                    ] = t[:, :, -batch.max_input_length :, :]
                    del t

                    start_index = end_index

        return cls(
            batch_id=batches[0].batch_id,
            requests=requests,
            requests_idx_mapping=requests_idx_mapping,
            input_ids=None,
            attention_mask=attention_mask,
            decoder_input_ids=decoder_input_ids,
            all_decoder_input_ids=all_decoder_input_ids,
            decoder_attention_mask=decoder_attention_mask,
            encoder_last_hidden_state=encoder_last_hidden_state,
            past_key_values=past_key_values,
            input_lengths=input_lengths,
            decoder_input_lengths=decoder_input_lengths,
            prefix_offsets=prefix_offsets,
            read_offsets=read_offsets,
            next_token_choosers=next_token_choosers,
            stopping_criterias=stopping_criterias,
            top_n_tokens=top_n_tokens,
            top_n_tokens_tensor=top_n_tokens_tensor,
            max_input_length=max_input_length,
            max_decoder_input_length=max_decoder_input_length,
            padding_right_offset=padding_right_offset,
            max_tokens=max_tokens,
        )

    def __len__(self):
        return len(self.requests)


class Seq2SeqLM(Model):
    def __init__(
        self,
        model_id: str,
        model_class,
        revision: Optional[str] = None,
        quantize: Optional[str] = None,
        speculator: Optional[str] = None,
        dtype: Optional[torch.dtype] = None,
        default_dtype=torch.float16,
        trust_remote_code: bool = False,
        config_class=AutoConfig,
        tokenizer_class=AutoTokenizer,
        aliases=None,
    ):
        self.quantize = quantize
        self.process_group, rank, world_size = initialize_torch_distributed()
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



