def concatenate()

in backends/gaudi/server/text_generation_server/models/seq2seq_lm.py [0:0]


    def concatenate(cls, batches: List["Seq2SeqLMBatch"]) -> "Seq2SeqLMBatch":
        """Concatenate multiple batches together by padding internal torch tensors"""

        # Used for padding
        total_batch_size = 0
        max_input_length = 0
        max_decoder_input_length = 0
        padding_right_offset = 0
        for batch in batches:
            total_batch_size += len(batch)
            max_input_length = max(max_input_length, batch.max_input_length)
            max_decoder_input_length = max(
                max_decoder_input_length, batch.max_decoder_input_length
            )
            padding_right_offset = max(padding_right_offset, batch.padding_right_offset)

        # Batch attributes
        requests = []
        requests_idx_mapping = {}
        all_decoder_input_ids = []
        input_lengths = []
        decoder_input_lengths = []
        prefix_offsets = []
        read_offsets = []
        next_token_choosers = []
        stopping_criterias = []
        top_n_tokens = []
        max_tokens = 0

        # Batch tensors
        attention_mask = None
        decoder_input_ids = None
        decoder_attention_mask = None
        encoder_last_hidden_state = None
        top_n_tokens_tensor = None
        past_key_values = []

        # Used for slicing correctly inside the tensors
        # Equivalent to a cumsum on batch sizes
        start_index = 0

        for i, batch in enumerate(batches):
            # Extend all list attributes
            requests.extend(batch.requests)
            all_decoder_input_ids.extend(batch.all_decoder_input_ids)
            input_lengths.extend(batch.input_lengths)
            decoder_input_lengths.extend(batch.decoder_input_lengths)
            prefix_offsets.extend(batch.prefix_offsets)
            read_offsets.extend(batch.read_offsets)
            next_token_choosers.extend(batch.next_token_choosers)
            stopping_criterias.extend(batch.stopping_criterias)
            top_n_tokens.extend(batch.top_n_tokens)

            if i == 0:
                requests_idx_mapping = batch.requests_idx_mapping
            else:
                # We need to offset the mapping for each batch by the cumulative batch size
                for k, v in batch.requests_idx_mapping.items():
                    requests_idx_mapping[k] = v + start_index

            # Slicing end index for this batch
            end_index = start_index + len(batch)

            # We only concatenate batches that did at least one step
            if batch.encoder_last_hidden_state is None:
                raise ValueError("Batch encoder_last_hidden_state cannot be None")

            # Create padded tensor
            if attention_mask is None:
                attention_mask = batch.attention_mask.new_zeros(
                    (total_batch_size, max_input_length),
                )
            # Copy to correct indices
            attention_mask[start_index:end_index, -batch.max_input_length :] = (
                batch.attention_mask[:, -batch.max_input_length :]
            )

            # Create padded tensor
            if decoder_input_ids is None:
                decoder_input_ids = batch.decoder_input_ids.new_zeros(
                    (total_batch_size, 1),
                )
            # Copy to correct indices
            decoder_input_ids[start_index:end_index] = batch.decoder_input_ids

            # Create padded tensor
            if decoder_attention_mask is None:
                # As decoder_attention_mask might not exist, we use `batch.attention_mask` for device here
                decoder_attention_mask = batch.attention_mask.new_zeros(
                    (total_batch_size, max_decoder_input_length + padding_right_offset),
                )
            # If the decoder mask does not exist yet, all generations started at the same time and we never concatenated
            # this batch. All generations are of length `batch.max_decoder_input_length`.
            left_offset = max_decoder_input_length - batch.max_decoder_input_length
            if batch.decoder_attention_mask is None:
                decoder_attention_mask[
                    start_index:end_index,
                    left_offset:-padding_right_offset,
                ] = 1
            # If it exists, we need to index
            else:
                batch_left_offset = (
                    batch.decoder_attention_mask.shape[1]
                    - batch.max_decoder_input_length
                    - batch.padding_right_offset
                )
                decoder_attention_mask[
                    start_index:end_index,
                    left_offset:-padding_right_offset,
                ] = batch.decoder_attention_mask[
                    :,
                    batch_left_offset : -batch.padding_right_offset,
                ]

            # Create padded tensor
            if encoder_last_hidden_state is None:
                encoder_last_hidden_state = batch.encoder_last_hidden_state.new_zeros(
                    (
                        total_batch_size,
                        max_input_length,
                        batch.encoder_last_hidden_state.shape[-1],
                    ),
                )

            if top_n_tokens_tensor is None:
                top_n_tokens_tensor = batches[0].top_n_tokens_tensor.new_zeros(
                    total_batch_size,
                )
            top_n_tokens_tensor[start_index:end_index] = batch.top_n_tokens_tensor

            # Copy to correct indices
            encoder_last_hidden_state[
                start_index:end_index, -batch.max_input_length :, :
            ] = batch.encoder_last_hidden_state[:, -batch.max_input_length :, :]
            batch.encoder_last_hidden_state = None

            # Ensure that we can update tensors in-place
            if isinstance(batch.past_key_values[0], tuple):
                batch.past_key_values = [
                    [t for t in layer] for layer in batch.past_key_values
                ]

            # Add eventual padding tokens that were added while concatenating
            max_tokens += batch.max_tokens + (
                max_input_length
                - batch.max_input_length
                + max_decoder_input_length
                - batch.max_decoder_input_length
            ) * len(batch)

            start_index = end_index

        # Determine shapes for new past kv tensors
        first_past_kvs = batches[0].past_key_values
        _, num_heads, _, head_dim = first_past_kvs[0][0].shape

        padded_dec_t_shape = (
            total_batch_size,
            num_heads,
            (max_decoder_input_length - 1),
            head_dim,
        )

        padded_enc_t_shape = (
            total_batch_size,
            num_heads,
            max_input_length,
            head_dim,
        )

        # Iterate over attention layers
        for j in range(len(first_past_kvs)):
            past_key_values.append([])

            # Decoder past
            for k in range(0, 2):
                # Initialize tensors
                padded_past_values = first_past_kvs[j][k].new_zeros(padded_dec_t_shape)
                past_key_values[j].append(padded_past_values)

                start_index = 0
                for batch in batches:
                    t = batch.past_key_values[j][k]
                    # Clear reference to the original tensor
                    batch.past_key_values[j][k] = None
                    # Slicing end index for this batch
                    end_index = start_index + len(batch)
                    # We slice the past keys and values to remove the padding from previous batches
                    past_seq_len = batch.max_decoder_input_length - 1
                    padded_past_values[start_index:end_index, :, -past_seq_len:, :] = t[
                        :, :, -past_seq_len:, :
                    ]
                    del t

                    start_index = end_index

            # Encoder past
            for k in range(2, 4):
                # Initialize tensors
                padded_past_values = first_past_kvs[j][k].new_zeros(padded_enc_t_shape)
                past_key_values[j].append(padded_past_values)

                start_index = 0
                for batch in batches:
                    t = batch.past_key_values[j][k]
                    # Clear reference to the original tensor
                    batch.past_key_values[j][k] = None
                    # Slicing end index for this batch
                    end_index = start_index + len(batch)
                    # We slice the past keys and values to remove the padding from previous batches
                    padded_past_values[
                        start_index:end_index, :, -batch.max_input_length :, :
                    ] = t[:, :, -batch.max_input_length :, :]
                    del t

                    start_index = end_index

        return cls(
            batch_id=batches[0].batch_id,
            requests=requests,
            requests_idx_mapping=requests_idx_mapping,
            input_ids=None,
            attention_mask=attention_mask,
            decoder_input_ids=decoder_input_ids,
            all_decoder_input_ids=all_decoder_input_ids,
            decoder_attention_mask=decoder_attention_mask,
            encoder_last_hidden_state=encoder_last_hidden_state,
            past_key_values=past_key_values,
            input_lengths=input_lengths,
            decoder_input_lengths=decoder_input_lengths,
            prefix_offsets=prefix_offsets,
            read_offsets=read_offsets,
            next_token_choosers=next_token_choosers,
            stopping_criterias=stopping_criterias,
            top_n_tokens=top_n_tokens,
            top_n_tokens_tensor=top_n_tokens_tensor,
            max_input_length=max_input_length,
            max_decoder_input_length=max_decoder_input_length,
            padding_right_offset=padding_right_offset,
            max_tokens=max_tokens,
        )