in server/text_generation_server/layers/layernorm.py [0:0]
def forward(self, hidden_states, residual=None):
if SYSTEM == "ipex":
out = ipex.llm.functional.add_rms_norm(
residual,
hidden_states,
self.weight,
None,
self.variance_epsilon,
residual is not None,
)
return out, residual if residual is not None else hidden_states
elif SYSTEM == "rocm":
# We use VLLM RMSNorm kernel that can be compiled for RoCm, instead of Flash Attention ones that can not.
if residual is not None:
ops.fused_add_rms_norm(
hidden_states,
residual,
self.weight.data,
self.variance_epsilon,
)
return hidden_states, residual
residual = hidden_states
out = torch.empty_like(hidden_states)
ops.rms_norm(
out,
hidden_states,
self.weight.data,
self.variance_epsilon,
)
return out, residual
elif hidden_states.shape[-1] > 8192:
if residual is not None:
hidden_states += residual
residual = hidden_states
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(
variance + self.variance_epsilon
)
# convert into half-precision if necessary
if self.weight.dtype in [torch.float16, torch.bfloat16]:
hidden_states = hidden_states.to(self.weight.dtype)
return self.weight * hidden_states, residual
elif SYSTEM == "cuda":
# faster post attention rms norm
(
normed_hidden_states,
res,
*rest,
) = dropout_layer_norm.dropout_add_ln_fwd(
hidden_states,
residual,
self.weight,
None,
None,
None,
None,
None,
0.0,
self.variance_epsilon,
1.0,
0,
None,
False,
True, # Activate RMSNorm
)
if res is None:
res = hidden_states
return normed_hidden_states, res
else:
raise ValueError(
"Your system seem to be not supported. Please check your install or open an issue at https://github.com/huggingface/text-generation-inference/issues with a clear reproduction."
)