backends/gaudi/server/text_generation_server/layers/gptq/quantize.py (855 lines of code) (raw):
import time
import torch.nn as nn
import math
import json
import os
import torch
import transformers
from texttable import Texttable
from transformers import AutoModelForCausalLM, AutoConfig, AutoTokenizer
from huggingface_hub import HfApi
from accelerate import init_empty_weights
from text_generation_server.utils import initialize_torch_distributed, Weights
from text_generation_server.utils.hub import weight_files
from text_generation_server.layers.gptq import QuantLinear
from loguru import logger
from typing import Optional
from text_generation_server.layers.gptq.utils import torch_snr_error
from text_generation_server.utils.weights import DefaultWeightsLoader, UnquantizedWeight
DEV = torch.device("cuda:0")
class Quantizer(nn.Module):
def __init__(self, shape=1):
super(Quantizer, self).__init__()
self.register_buffer("maxq", torch.tensor(0))
self.register_buffer("scale", torch.zeros(shape))
self.register_buffer("zero", torch.zeros(shape))
def configure(
self,
bits,
perchannel=False,
sym=True,
mse=False,
norm=2.4,
grid=100,
maxshrink=0.8,
trits=False,
):
self.maxq = torch.tensor(2**bits - 1)
self.perchannel = perchannel
self.sym = sym
self.mse = mse
self.norm = norm
self.grid = grid
self.maxshrink = maxshrink
if trits:
self.maxq = torch.tensor(-1)
self.scale = torch.zeros_like(self.scale)
def _quantize(self, x, scale, zero, maxq):
if maxq < 0:
return (x > scale / 2).float() * scale + (x < zero / 2).float() * zero
q = torch.clamp(torch.round(x / scale) + zero, 0, maxq)
return scale * (q - zero)
def find_params(self, x, weight=False):
dev = x.device
self.maxq = self.maxq.to(dev)
shape = x.shape
if self.perchannel:
if weight:
x = x.flatten(1)
else:
if len(shape) == 4:
x = x.permute([1, 0, 2, 3])
x = x.flatten(1)
if len(shape) == 3:
x = x.reshape((-1, shape[-1])).t()
if len(shape) == 2:
x = x.t()
else:
x = x.flatten().unsqueeze(0)
tmp = torch.zeros(x.shape[0], device=dev)
xmin = torch.minimum(x.min(1)[0], tmp)
xmax = torch.maximum(x.max(1)[0], tmp)
if self.sym:
xmax = torch.maximum(torch.abs(xmin), xmax)
tmp = xmin < 0
if torch.any(tmp):
xmin[tmp] = -xmax[tmp]
tmp = (xmin == 0) & (xmax == 0)
xmin[tmp] = -1
xmax[tmp] = +1
if self.maxq < 0:
self.scale = xmax
self.zero = xmin
else:
self.scale = (xmax - xmin) / self.maxq
if self.sym:
self.zero = torch.full_like(self.scale, (self.maxq + 1) / 2)
else:
self.zero = torch.round(-xmin / self.scale)
if self.mse:
best = torch.full([x.shape[0]], float("inf"), device=dev)
for i in range(int(self.maxshrink * self.grid)):
p = 1 - i / self.grid
xmin1 = p * xmin
xmax1 = p * xmax
scale1 = (xmax1 - xmin1) / self.maxq
zero1 = torch.round(-xmin1 / scale1) if not self.sym else self.zero
q = self._quantize(
x, scale1.unsqueeze(1), zero1.unsqueeze(1), self.maxq
)
q -= x
q.abs_()
q.pow_(self.norm)
err = torch.sum(q, 1)
tmp = err < best
if torch.any(tmp):
best[tmp] = err[tmp]
self.scale[tmp] = scale1[tmp]
self.zero[tmp] = zero1[tmp]
if not self.perchannel:
if weight:
tmp = shape[0]
else:
tmp = shape[1] if len(shape) != 3 else shape[2]
self.scale = self.scale.repeat(tmp)
self.zero = self.zero.repeat(tmp)
if weight:
shape = [-1] + [1] * (len(shape) - 1)
self.scale = self.scale.reshape(shape)
self.zero = self.zero.reshape(shape)
return
if len(shape) == 4:
self.scale = self.scale.reshape((1, -1, 1, 1))
self.zero = self.zero.reshape((1, -1, 1, 1))
if len(shape) == 3:
self.scale = self.scale.reshape((1, 1, -1))
self.zero = self.zero.reshape((1, 1, -1))
if len(shape) == 2:
self.scale = self.scale.unsqueeze(0)
self.zero = self.zero.unsqueeze(0)
def quantize(self, x):
if self.ready():
return self._quantize(x, self.scale, self.zero, self.maxq)
return x
def enabled(self):
return self.maxq > 0
def ready(self):
return torch.all(self.scale != 0)
class GPTQ:
def __init__(self, layer, observe=False):
self.layer = layer
self.dev = self.layer.weight.device
W = layer.weight.data.clone()
if isinstance(self.layer, nn.Conv2d):
W = W.flatten(1)
if isinstance(self.layer, transformers.Conv1D):
W = W.t()
self.rows = W.shape[0]
self.columns = W.shape[1]
self.H = torch.zeros((self.columns, self.columns), device=self.dev)
self.nsamples = 0
self.quantizer = Quantizer()
self.observe = observe
def add_batch(self, inp, out):
# Hessian H = 2 X XT + λ I
if self.observe:
self.inp1 = inp
self.out1 = out
else:
self.inp1 = None
self.out1 = None
if len(inp.shape) == 2:
inp = inp.unsqueeze(0)
tmp = inp.shape[0]
if isinstance(self.layer, nn.Linear) or isinstance(
self.layer, transformers.Conv1D
):
if len(inp.shape) == 3:
inp = inp.reshape((-1, inp.shape[-1]))
inp = inp.t()
if isinstance(self.layer, nn.Conv2d):
unfold = nn.Unfold(
self.layer.kernel_size,
dilation=self.layer.dilation,
padding=self.layer.padding,
stride=self.layer.stride,
)
inp = unfold(inp)
inp = inp.permute([1, 0, 2])
inp = inp.flatten(1)
self.H *= self.nsamples / (self.nsamples + tmp)
self.nsamples += tmp
# inp = inp.float()
inp = math.sqrt(2 / self.nsamples) * inp.float()
# self.H += 2 / self.nsamples * inp.matmul(inp.t())
self.H += inp.matmul(inp.t())
def print_loss(self, name, q_weight, weight_error, timecost):
table = Texttable()
length = 28
name = (
(name + " " * (length - len(name)))
if len(name) <= length
else name[:length]
)
table.header(["name", "weight_error", "fp_inp_SNR", "q_inp_SNR", "time"])
# assign weight
self.layer.weight.data = q_weight.reshape(self.layer.weight.shape).to(
self.layer.weight.data.dtype
)
if self.inp1 is not None:
# quantize input to int8
quantizer = Quantizer()
quantizer.configure(8, perchannel=False, sym=True, mse=False)
quantizer.find_params(self.inp1)
q_in = quantizer.quantize(self.inp1).type(torch.float16)
q_out = self.layer(q_in)
# get kinds of SNR
q_SNR = torch_snr_error(q_out, self.out1).item()
fp_SNR = torch_snr_error(self.layer(self.inp1), self.out1).item()
else:
q_SNR = "-"
fp_SNR = "-"
table.add_row([name, weight_error, fp_SNR, q_SNR, timecost])
print(table.draw().split("\n")[-2])
def fasterquant(
self, blocksize=128, percdamp=0.01, groupsize=-1, act_order=False, name=""
):
self.layer.to(self.dev)
W = self.layer.weight.data.clone()
if isinstance(self.layer, nn.Conv2d):
W = W.flatten(1)
if isinstance(self.layer, transformers.Conv1D):
W = W.t()
W = W.float()
tick = time.time()
if not self.quantizer.ready():
self.quantizer.find_params(W, weight=True)
H = self.H
if not self.observe:
del self.H
dead = torch.diag(H) == 0
H[dead, dead] = 1
W[:, dead] = 0
if act_order:
perm = torch.argsort(torch.diag(H), descending=True)
W = W[:, perm]
H = H[perm][:, perm]
Losses = torch.zeros_like(W)
Q = torch.zeros_like(W)
damp = percdamp * torch.mean(torch.diag(H))
diag = torch.arange(self.columns, device=self.dev)
H[diag, diag] += damp
H = torch.linalg.cholesky(H)
H = torch.cholesky_inverse(H)
try:
H = torch.linalg.cholesky(H, upper=True)
except Exception:
# Addition because Falcon fails on h_to_4h
H = torch.linalg.cholesky(
H + 1e-5 * torch.eye(H.shape[0]).to(H.device), upper=True
)
Hinv = H
g_idx = []
scale = []
zero = []
now_idx = 1
for i1 in range(0, self.columns, blocksize):
i2 = min(i1 + blocksize, self.columns)
count = i2 - i1
W1 = W[:, i1:i2].clone()
Q1 = torch.zeros_like(W1)
Err1 = torch.zeros_like(W1)
Losses1 = torch.zeros_like(W1)
Hinv1 = Hinv[i1:i2, i1:i2]
for i in range(count):
w = W1[:, i]
d = Hinv1[i, i]
if groupsize != -1:
if (i1 + i) % groupsize == 0:
self.quantizer.find_params(
W[:, (i1 + i) : (i1 + i + groupsize)], weight=True
)
if ((i1 + i) // groupsize) - now_idx == -1:
scale.append(self.quantizer.scale)
zero.append(self.quantizer.zero)
now_idx += 1
q = self.quantizer.quantize(w.unsqueeze(1)).flatten()
Q1[:, i] = q
Losses1[:, i] = (w - q) ** 2 / d**2
err1 = (w - q) / d
W1[:, i:] -= err1.unsqueeze(1).matmul(Hinv1[i, i:].unsqueeze(0))
Err1[:, i] = err1
Q[:, i1:i2] = Q1
Losses[:, i1:i2] = Losses1 / 2
W[:, i2:] -= Err1.matmul(Hinv[i1:i2, i2:])
torch.cuda.synchronize()
error = torch.sum(Losses).item()
groupsize = groupsize if groupsize != -1 else self.columns
g_idx = [i // groupsize for i in range(self.columns)]
g_idx = torch.tensor(g_idx, dtype=torch.int32, device=Q.device)
if act_order:
invperm = torch.argsort(perm)
Q = Q[:, invperm]
g_idx = g_idx[invperm]
if isinstance(self.layer, transformers.Conv1D):
Q = Q.t()
self.print_loss(
name=name, q_weight=Q, weight_error=error, timecost=(time.time() - tick)
)
if scale == []:
scale.append(self.quantizer.scale)
zero.append(self.quantizer.zero)
scale = torch.cat(scale, dim=1)
zero = torch.cat(zero, dim=1)
return scale, zero, g_idx, error
def free(self):
self.inp1 = None
self.out1 = None
self.H = None
self.Losses = None
self.Trace = None
torch.cuda.empty_cache()
def get_wikitext2(nsamples, seed, seqlen, model_id, trust_remote_code):
from datasets import load_dataset
traindata = load_dataset("wikitext", "wikitext-2-raw-v1", split="train")
testdata = load_dataset("wikitext", "wikitext-2-raw-v1", split="test")
try:
tokenizer = AutoTokenizer.from_pretrained(
model_id, use_fast=False, trust_remote_code=trust_remote_code
)
except Exception:
tokenizer = AutoTokenizer.from_pretrained(
model_id, use_fast=True, trust_remote_code=trust_remote_code
)
trainenc = tokenizer("\n\n".join(traindata["text"]), return_tensors="pt")
testenc = tokenizer("\n\n".join(testdata["text"]), return_tensors="pt")
import random
random.seed(seed)
trainloader = []
for _ in range(nsamples):
i = random.randint(0, trainenc.input_ids.shape[1] - seqlen - 1)
j = i + seqlen
inp = trainenc.input_ids[:, i:j]
tar = inp.clone()
tar[:, :-1] = -100
trainloader.append((inp, tar))
return trainloader, testenc
def get_ptb(nsamples, seed, seqlen, model_id, trust_remote_code):
from datasets import load_dataset
traindata = load_dataset("ptb_text_only", "penn_treebank", split="train")
valdata = load_dataset("ptb_text_only", "penn_treebank", split="validation")
try:
tokenizer = AutoTokenizer.from_pretrained(
model_id, use_fast=False, trust_remote_code=trust_remote_code
)
except Exception:
tokenizer = AutoTokenizer.from_pretrained(
model_id, use_fast=True, trust_remote_code=trust_remote_code
)
trainenc = tokenizer("\n\n".join(traindata["sentence"]), return_tensors="pt")
testenc = tokenizer("\n\n".join(valdata["sentence"]), return_tensors="pt")
import random
random.seed(seed)
trainloader = []
for _ in range(nsamples):
i = random.randint(0, trainenc.input_ids.shape[1] - seqlen - 1)
j = i + seqlen
inp = trainenc.input_ids[:, i:j]
tar = inp.clone()
tar[:, :-1] = -100
trainloader.append((inp, tar))
return trainloader, testenc
def get_c4(nsamples, seed, seqlen, model_id, trust_remote_code):
from datasets import load_dataset
traindata = load_dataset(
"allenai/c4",
"allenai--c4",
data_files={"train": "en/c4-train.00000-of-01024.json.gz"},
split="train",
use_auth_token=False,
)
valdata = load_dataset(
"allenai/c4",
"allenai--c4",
data_files={"validation": "en/c4-validation.00000-of-00008.json.gz"},
split="validation",
use_auth_token=False,
)
try:
tokenizer = AutoTokenizer.from_pretrained(
model_id, use_fast=False, trust_remote_code=trust_remote_code
)
except Exception:
tokenizer = AutoTokenizer.from_pretrained(
model_id, use_fast=True, trust_remote_code=trust_remote_code
)
import random
random.seed(seed)
trainloader = []
for _ in range(nsamples):
while True:
i = random.randint(0, len(traindata) - 1)
trainenc = tokenizer(traindata[i]["text"], return_tensors="pt")
if trainenc.input_ids.shape[1] >= seqlen:
break
i = random.randint(0, trainenc.input_ids.shape[1] - seqlen - 1)
j = i + seqlen
inp = trainenc.input_ids[:, i:j]
tar = inp.clone()
tar[:, :-1] = -100
trainloader.append((inp, tar))
import random
random.seed(0)
valenc = []
for _ in range(256):
while True:
i = random.randint(0, len(valdata) - 1)
tmp = tokenizer(valdata[i]["text"], return_tensors="pt")
if tmp.input_ids.shape[1] >= seqlen:
break
i = random.randint(0, tmp.input_ids.shape[1] - seqlen - 1)
j = i + seqlen
valenc.append(tmp.input_ids[:, i:j])
valenc = torch.hstack(valenc)
class TokenizerWrapper:
def __init__(self, input_ids):
self.input_ids = input_ids
valenc = TokenizerWrapper(valenc)
return trainloader, valenc
def get_ptb_new(nsamples, seed, seqlen, model_id, trust_remote_code):
from datasets import load_dataset
traindata = load_dataset("ptb_text_only", "penn_treebank", split="train")
testdata = load_dataset("ptb_text_only", "penn_treebank", split="test")
try:
tokenizer = AutoTokenizer.from_pretrained(
model_id, use_fast=False, trust_remote_code=trust_remote_code
)
except Exception:
tokenizer = AutoTokenizer.from_pretrained(
model_id, use_fast=True, trust_remote_code=trust_remote_code
)
trainenc = tokenizer(" ".join(traindata["sentence"]), return_tensors="pt")
testenc = tokenizer(" ".join(testdata["sentence"]), return_tensors="pt")
import random
random.seed(seed)
trainloader = []
for _ in range(nsamples):
i = random.randint(0, trainenc.input_ids.shape[1] - seqlen - 1)
j = i + seqlen
inp = trainenc.input_ids[:, i:j]
tar = inp.clone()
tar[:, :-1] = -100
trainloader.append((inp, tar))
return trainloader, testenc
def get_c4_new(nsamples, seed, seqlen, model_id, trust_remote_code):
from datasets import load_dataset
traindata = load_dataset(
"allenai/c4",
"allenai--c4",
data_files={"train": "en/c4-train.00000-of-01024.json.gz"},
split="train",
)
valdata = load_dataset(
"allenai/c4",
"allenai--c4",
data_files={"validation": "en/c4-validation.00000-of-00008.json.gz"},
split="validation",
)
try:
tokenizer = AutoTokenizer.from_pretrained(
model_id, use_fast=False, trust_remote_code=trust_remote_code
)
except Exception:
tokenizer = AutoTokenizer.from_pretrained(
model_id, use_fast=True, trust_remote_code=trust_remote_code
)
import random
random.seed(seed)
trainloader = []
for _ in range(nsamples):
while True:
i = random.randint(0, len(traindata) - 1)
trainenc = tokenizer(traindata[i]["text"], return_tensors="pt")
if trainenc.input_ids.shape[1] >= seqlen:
break
i = random.randint(0, trainenc.input_ids.shape[1] - seqlen - 1)
j = i + seqlen
inp = trainenc.input_ids[:, i:j]
tar = inp.clone()
tar[:, :-1] = -100
trainloader.append((inp, tar))
valenc = tokenizer(" ".join(valdata[:1100]["text"]), return_tensors="pt")
valenc = valenc.input_ids[:, : (256 * seqlen)]
class TokenizerWrapper:
def __init__(self, input_ids):
self.input_ids = input_ids
valenc = TokenizerWrapper(valenc)
return trainloader, valenc
def get_loaders(
name, nsamples=128, seed=0, seqlen=2048, model_id="", trust_remote_code=False
):
if "wikitext2" in name:
return get_wikitext2(nsamples, seed, seqlen, model_id, trust_remote_code)
if "ptb" in name:
if "new" in name:
return get_ptb_new(nsamples, seed, seqlen, model_id, trust_remote_code)
return get_ptb(nsamples, seed, seqlen, model_id, trust_remote_code)
if "c4" in name:
if "new" in name:
return get_c4_new(nsamples, seed, seqlen, model_id, trust_remote_code)
return get_c4(nsamples, seed, seqlen, model_id, trust_remote_code)
def find_layers(module, layers=(nn.Conv2d, nn.Linear), name=""):
# Skip last lm_head linear
# Need isintance Falcon is inheriting Linear.
if isinstance(module, layers) and "lm_head" not in name:
return {name: module}
res = {}
for name1, child in module.named_children():
res.update(
find_layers(
child, layers=layers, name=name + "." + name1 if name != "" else name1
)
)
return res
@torch.no_grad()
def sequential(
model,
dataloader,
dev,
nsamples,
bits,
groupsize,
*,
hooks,
percdamp=0.01,
sym: bool = False,
act_order: bool = False,
):
print("Starting ...")
use_cache = model.config.use_cache
model.config.use_cache = False
try:
layers = model.model.layers
prefix = "model.layers"
except Exception:
layers = model.transformer.h
prefix = "transformer.h"
dtype = next(iter(model.parameters())).dtype
inps = torch.zeros(
(nsamples, model.seqlen, model.config.hidden_size), dtype=dtype, device=dev
)
cache = {"i": 0}
extra = {}
class Catcher(nn.Module):
def __init__(self, module):
super().__init__()
self.module = module
def forward(self, inp, **kwargs):
inps[cache["i"]] = inp
cache["i"] += 1
extra.update(kwargs.copy())
raise ValueError
layers[0] = Catcher(layers[0])
for batch in dataloader:
try:
model(batch[0].cuda())
except ValueError:
pass
layers[0] = layers[0].module
# layers[0] = layers[0].cpu()
# model.model.embed_tokens = model.model.embed_tokens.cpu()
# model.model.norm = model.model.norm.cpu()
torch.cuda.empty_cache()
for hook in hooks:
hook.remove()
outs = torch.zeros_like(inps)
extra = {
k: v.to(dev) if isinstance(v, torch.Tensor) else v for k, v in extra.items()
}
print("Ready.")
quantizers = {}
for i in range(len(layers)):
print(f"Quantizing layer {i+1}/{len(layers)}..")
print("+------------------+--------------+------------+-----------+-------+")
print("| name | weight_error | fp_inp_SNR | q_inp_SNR | time |")
print("+==================+==============+============+===========+=======+")
layer = layers[i]
layer.load()
full = find_layers(layer)
sequential = [list(full.keys())]
for names in sequential:
subset = {n: full[n] for n in names}
gptq = {}
for name in subset:
gptq[name] = GPTQ(subset[name])
gptq[name].quantizer.configure(
bits, perchannel=True, sym=sym, mse=False
)
pass
def add_batch(name):
nonlocal gptq
def tmp(_, inp, out):
gptq[name].add_batch(inp[0].data, out.data)
return tmp
handles = []
for name in subset:
handles.append(subset[name].register_forward_hook(add_batch(name)))
for j in range(nsamples):
outs[j] = layer(inps[j].unsqueeze(0), **extra)[0]
for h in handles:
h.remove()
for name in subset:
scale, zero, g_idx, error = gptq[name].fasterquant(
percdamp=percdamp,
groupsize=groupsize,
act_order=act_order,
name=name,
)
quantizers[f"{prefix}.{i}.{name}"] = (
gptq[name].quantizer.cpu(),
scale.cpu(),
zero.cpu(),
g_idx.cpu(),
bits,
groupsize,
)
gptq[name].free()
for j in range(nsamples):
outs[j] = layer(inps[j].unsqueeze(0), **extra)[0]
layer.unload()
del layer
del gptq
torch.cuda.empty_cache()
inps, outs = outs, inps
print("+------------------+--------------+------------+-----------+-------+")
print("\n")
model.config.use_cache = use_cache
return quantizers
def make_quant_linear(module, names, bits, groupsize, name=""):
if isinstance(module, QuantLinear):
return
for attr in dir(module):
tmp = getattr(module, attr)
name1 = name + "." + attr if name != "" else attr
if name1 in names:
delattr(module, attr)
setattr(
module,
attr,
QuantLinear.new(
bits,
groupsize,
tmp.in_features,
tmp.out_features,
tmp.bias is not None,
),
)
for name1, child in module.named_children():
make_quant_linear(
child, names, bits, groupsize, name + "." + name1 if name != "" else name1
)
# TODO: perform packing on GPU
def pack(model, quantizers, bits, groupsize):
layers = find_layers(model)
layers = {n: layers[n] for n in quantizers}
make_quant_linear(model, quantizers, bits, groupsize)
qlayers = find_layers(model, (QuantLinear,))
print("Packing ...")
for name in qlayers:
print(name)
quantizers[name], scale, zero, g_idx, _, _ = quantizers[name]
qlayers[name].pack(layers[name], scale, zero, g_idx)
print("Done.")
return model
def setdeepattr(module, full_name, tensor):
current = module
tokens = full_name.split(".")
for token in tokens[:-1]:
current = getattr(current, token)
setattr(current, tokens[-1], tensor)
def getdeepattr(module, full_name):
current = module
tokens = full_name.split(".")
for token in tokens:
current = getattr(current, token)
return current
def load_weights_pre_hook(module_name, weights, recursive=False):
def inner(module, args):
print(f"Pre hook {module_name}")
local_params = {}
for k, v in module.named_parameters():
if not recursive and k.count(".") != 1:
continue
local_params[k] = v
for k, v in module.named_buffers():
if not recursive and k.count(".") != 1:
continue
local_params[k] = v
for local_param in local_params:
current_tensor = getdeepattr(module, local_param)
if current_tensor.device == torch.device("meta"):
# print(f"Loading {local_param}")
if module_name:
tensor_name = f"{module_name}.{local_param}"
else:
tensor_name = local_param
tensor = weights.get_tensor(tensor_name)
setdeepattr(module, local_param, nn.Parameter(tensor))
else:
tensor = current_tensor.to(device=torch.device("cuda:0"))
if current_tensor.requires_grad:
tensor = nn.Parameter(tensor)
setdeepattr(module, local_param, tensor)
return inner
def load_weights_post_hook(module_name, weights, recursive=False):
def inner(module, args, output):
print(f"Post hook {module_name}")
local_params = {}
for k, v in module.named_parameters():
if not recursive and k.count(".") != 1:
continue
local_params[k] = v
for k, v in module.named_buffers():
if not recursive and k.count(".") != 1:
continue
local_params[k] = v
for local_param in local_params:
# print(f"Unloading {local_param}")
current_tensor = getdeepattr(module, local_param)
setdeepattr(
module,
local_param,
nn.Parameter(current_tensor.to(device=torch.device("cpu"))),
)
return output
return inner
def quantize(
model_id: str,
bits: int,
groupsize: int,
output_dir: str,
revision: str,
trust_remote_code: bool,
upload_to_model_id: Optional[str],
percdamp: float,
act_order: bool,
sym: bool,
):
print("loading model")
config = AutoConfig.from_pretrained(
model_id,
trust_remote_code=trust_remote_code,
)
with init_empty_weights():
model = AutoModelForCausalLM.from_config(
config, torch_dtype=torch.float16, trust_remote_code=trust_remote_code
)
model = model.eval()
print("LOADED model")
files = weight_files(model_id, revision, extension=".safetensors")
process_group, _, _ = initialize_torch_distributed()
weights = Weights(
files,
device=torch.device("cuda:0"),
dtype=torch.float16,
process_group=process_group,
aliases={"embed_tokens.weight": ["lm_head.weight"]},
weights_loader=DefaultWeightsLoader(UnquantizedWeight),
)
hooks = []
for name, module in model.named_modules():
def load(module, name):
def _load():
load_weights_pre_hook(name, weights, recursive=True)(module, None)
return _load
def unload(module, name):
def _unload():
load_weights_post_hook(name, weights, recursive=True)(
module, None, None
)
return _unload
module.load = load(module, name)
module.unload = unload(module, name)
hooks.append(
module.register_forward_pre_hook(load_weights_pre_hook(name, weights))
)
hooks.append(
module.register_forward_hook(load_weights_post_hook(name, weights))
)
model.seqlen = 2048
dataset = "wikitext2"
nsamples = 128
seed = None
dataloader, testloader = get_loaders(
dataset,
nsamples=nsamples,
seed=seed,
model_id=model_id,
seqlen=model.seqlen,
trust_remote_code=trust_remote_code,
)
tick = time.time()
quantizers = sequential(
model,
dataloader,
DEV,
nsamples,
bits,
groupsize,
percdamp=percdamp,
act_order=act_order,
hooks=hooks,
sym=sym,
)
print(time.time() - tick)
pack(model, quantizers, bits, groupsize)
from safetensors.torch import save_file
from huggingface_hub import split_torch_state_dict_into_shards
state_dict = model.state_dict()
state_dict = {k: v.cpu().contiguous() for k, v in state_dict.items()}
max_shard_size = "10GB"
state_dict_split = split_torch_state_dict_into_shards(
state_dict,
filename_pattern="model.safetensors",
max_shard_size=max_shard_size,
)
index = None
if state_dict_split.is_sharded:
index = {
"metadata": state_dict_split.metadata,
"weight_map": state_dict_split.tensor_to_filename,
}
shards = state_dict_split.filename_to_tensors
os.makedirs(output_dir, exist_ok=True)
for shard_file, shard in shards.items():
save_file(
shard,
os.path.join(output_dir, shard_file),
metadata={
"format": "pt",
"quantized": "gptq",
"origin": "text-generation-inference",
},
)
if index is None:
path_to_weights = os.path.join(output_dir, "model.safetensors")
logger.info(f"Model weights saved in {path_to_weights}")
else:
save_index_file = "model.safetensors.index.json"
save_index_file = os.path.join(output_dir, save_index_file)
with open(save_index_file, "w", encoding="utf-8") as f:
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
f.write(content)
logger.info(
f"The model is bigger than the maximum size per checkpoint ({max_shard_size}) and is going to be "
f"split in {len(shards)} checkpoint shards. You can find where each parameters has been saved in the "
f"index located at {save_index_file}."
)
config = AutoConfig.from_pretrained(model_id, trust_remote_code=trust_remote_code)
config.quantization_config = {
"bits": bits,
"group_size": groupsize,
"damp_percent": percdamp,
"desc_act": act_order,
"static_groups": False,
"sym": sym,
"quant_method": "gptq",
}
config.save_pretrained(output_dir)
logger.info("Saved config")
logger.info("Saving tokenizer")
tokenizer = AutoTokenizer.from_pretrained(
model_id, trust_remote_code=trust_remote_code
)
tokenizer.save_pretrained(output_dir)
logger.info("Saved tokenizer")
if upload_to_model_id:
api = HfApi()
api.upload_folder(
folder_path=output_dir, repo_id=upload_to_model_id, repo_type="model"
)