backends/gaudi/server/text_generation_server/models/__init__.py (984 lines of code) (raw):

# ruff: noqa: F821 # the above line disables the `undefined-name` rule for the model type variables import torch import os from loguru import logger from transformers.configuration_utils import PretrainedConfig from huggingface_hub import hf_hub_download, HfApi from typing import Optional from pathlib import Path from typing import List, Dict import enum # Needed to properly setup habana_frameworks from text_generation_server.utils.speculate import get_speculate, set_speculate from text_generation_server.models.model import Model from text_generation_server.models.custom_modeling.flash_phi_moe_modeling import ( PhiMoEConfig, ) from text_generation_server.utils.adapter import ( AdapterParameters, build_layer_weight_lookup, load_and_merge_adapters, AdapterInfo, ) from text_generation_server.adapters.lora import LoraWeights from text_generation_server.utils.log import log_master __all__ = [ "Model", "CausalLM", "Seq2SeqLM", "get_model_with_lora_adapters", ] VLM_BATCH_TYPES = set() FLASH_ATTENTION = True try: from text_generation_server.models.flash_causal_lm import FlashCausalLM from text_generation_server.models.flash_vlm_causal_lm import FlashVlmCausalLM from text_generation_server.models.mllama_causal_lm import FlashMllamaCausalLM from text_generation_server.models.custom_modeling.flash_deepseek_v2_modeling import ( FlashDeepseekV2ForCausalLM, DeepseekV2Config, ) from text_generation_server.models.custom_modeling.flash_deepseek_v3_modeling import ( FlashDeepseekV3ForCausalLM, DeepseekV3Config, ) from text_generation_server.models.custom_modeling.flash_llama_modeling import ( FlashLlamaForCausalLM, ) from text_generation_server.models.custom_modeling.flash_llama4_modeling import ( Llama4ForConditionalGeneration, ) from text_generation_server.models.custom_modeling.flash_cohere_modeling import ( FlashCohereForCausalLM, ) from text_generation_server.models.custom_modeling.flash_gemma_modeling import ( FlashGemmaForCausalLM, ) from text_generation_server.models.custom_modeling.flash_gemma2_modeling import ( FlashGemma2ForCausalLM, ) from text_generation_server.models.custom_modeling.flash_gemma3_modeling import ( Gemma3ForConditionalGeneration, FlashGemma3ForCausalLM, ) from text_generation_server.models.custom_modeling.flash_dbrx_modeling import ( FlashDbrxForCausalLM, DbrxConfig, ) from text_generation_server.models.custom_modeling.flash_rw_modeling import ( RWConfig, FlashRWForCausalLM, ) from text_generation_server.models.custom_modeling.flash_neox_modeling import ( FlashGPTNeoXForCausalLM, ) from text_generation_server.models.custom_modeling.flash_pali_gemma_modeling import ( PaliGemmaForConditionalGeneration, ) from text_generation_server.models.custom_modeling.flash_phi_modeling import ( FlashPhiForCausalLM, ) from text_generation_server.models.mllama_causal_lm import FlashMllamaCausalLMBatch from text_generation_server.models.custom_modeling.flash_mllama import ( FlashMllamaForConditionalGeneration, ) from text_generation_server.models.custom_modeling.flash_llava_next import ( FlashLlavaNextForConditionalGeneration, ) from text_generation_server.models.custom_modeling.flash_santacoder_modeling import ( FlashSantacoderForCausalLM, ) from text_generation_server.models.custom_modeling.flash_starcoder2_modeling import ( FlashStarcoder2ForCausalLM, ) from text_generation_server.models.custom_modeling.flash_qwen2_modeling import ( Qwen2ForCausalLM, ) from text_generation_server.models.custom_modeling.flash_qwen3_modeling import ( Qwen3ForCausalLM, ) from text_generation_server.models.custom_modeling.flash_qwen3_moe_modeling import ( Qwen3MoeForCausalLM, ) from text_generation_server.models.custom_modeling.flash_mistral_modeling import ( FlashMistralForCausalLM, ) from text_generation_server.models.custom_modeling.flash_mixtral_modeling import ( FlashMixtralForCausalLM, ) from text_generation_server.models.custom_modeling.flash_gpt2_modeling import ( FlashGPT2ForCausalLM, ) from text_generation_server.models.custom_modeling.flash_gptj_modeling import ( FlashGPTJForCausalLM, ) from text_generation_server.models.custom_modeling.idefics2 import ( Idefics2ForConditionalGeneration, ) from text_generation_server.models.custom_modeling.idefics3 import ( Idefics3ForConditionalGeneration, ) from text_generation_server.models.custom_modeling.qwen2_vl import ( Qwen2VLForConditionalGeneration, ) from text_generation_server.models.custom_modeling.qwen2_5_vl import ( Qwen2_5VLForConditionalGeneration, Qwen2_5_VLConfig, Qwen2_5_VLProcessor, ) from text_generation_server.layers.attention import SUPPORTS_WINDOWING except ImportError as e: log_master(logger.warning, f"Could not import Flash Attention enabled models: {e}") SUPPORTS_WINDOWING = False FLASH_ATTENTION = False VLM_BATCH_TYPES = set() if FLASH_ATTENTION: __all__.append(FlashCausalLM) from text_generation_server.models.flash_vlm_causal_lm import ( FlashVlmCausalLMBatch, ) VLM_BATCH_TYPES = { FlashVlmCausalLMBatch, FlashMllamaCausalLMBatch, } __all__.append(VLM_BATCH_TYPES) class ModelType(enum.Enum): DEEPSEEK_V2 = { "type": "deepseek_v2", "name": "Deepseek V2", "url": "https://huggingface.co/deepseek-ai/DeepSeek-V2", } DEEPSEEK_V3 = { "type": "deepseek_v3", "name": "Deepseek V3", "url": "https://huggingface.co/deepseek-ai/DeepSeek-V3", } IDEFICS2 = { "type": "idefics2", "name": "Idefics 2", "url": "https://huggingface.co/HuggingFaceM4/idefics2-8b", "multimodal": True, } IDEFICS3 = { "type": "idefics3", "name": "Idefics 3", "url": "https://huggingface.co/HuggingFaceM4/Idefics3-8B-Llama3", "multimodal": True, } LLAVA_NEXT = { "type": "llava_next", "name": "Llava Next (1.6)", "url": "https://huggingface.co/llava-hf/llava-v1.6-vicuna-13b-hf", "multimodal": True, } LLAMA = { "type": "llama", "name": "Llama", "url": "https://huggingface.co/collections/meta-llama/llama-31-669fc079a0c406a149a5738f", } LLAMA4 = { "type": "llama4", "name": "Llama4", "url": "https://huggingface.co/collections/meta-llama/llama-31-669fc079a0c406a149a5738f", } PHI3 = { "type": "phi3", "name": "Phi 3", "url": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct", } GRANITE = { "type": "granite", "name": "Granite", "url": "https://huggingface.co/ibm-granite/granite-3.0-8b-instruct", } GEMMA = { "type": "gemma", "name": "Gemma", "url": "https://huggingface.co/google/gemma-7b", } PALIGEMMA = { "type": "paligemma", "name": "PaliGemma", "url": "https://huggingface.co/google/paligemma-3b-pt-224", } GEMMA2 = { "type": "gemma2", "name": "Gemma2", "url": "https://huggingface.co/collections/google/gemma-2-release-667d6600fd5220e7b967f315", } GEMMA3 = { "type": "gemma3", "name": "Gemma3", "url": "https://huggingface.co/collections/google/gemma-3-release-67c6c6f89c4f76621268bb6d", } GEMMA3_TEXT = { "type": "gemma3_text", "name": "Gemma3 Text", "url": "https://huggingface.co/collections/google/gemma-3-release-67c6c6f89c4f76621268bb6d", } COHERE = { "type": "cohere", "name": "Cohere", "url": "https://huggingface.co/CohereForAI/c4ai-command-r-plus", } DBRX = { "type": "dbrx", "name": "Dbrx", "url": "https://huggingface.co/databricks/dbrx-instruct", } MAMBA = { "type": "mamba", "name": "Mamba", "url": "https://huggingface.co/state-spaces/mamba-2.8b-slimpj", } MISTRAL = { "type": "mistral", "name": "Mistral", "url": "https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407", } MIXTRAL = { "type": "mixtral", "name": "Mixtral", "url": "https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1", } GPT_BIGCODE = { "type": "gpt_bigcode", "name": "Gpt Bigcode", "url": "https://huggingface.co/bigcode/gpt_bigcode-santacoder", } PHI = { "type": "phi", "name": "Phi", "url": "https://huggingface.co/microsoft/phi-1_5", } PHI_MOE = { "type": "phimoe", "name": "PhiMoe", "url": "https://huggingface.co/microsoft/Phi-3.5-MoE-instruct", } BAICHUAN = { "type": "baichuan", "name": "Baichuan", "url": "https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat", } FALCON = { "type": "falcon", "name": "Falcon", "url": "https://huggingface.co/tiiuae/falcon-7b-instruct", } STARCODER2 = { "type": "starcoder2", "name": "StarCoder 2", "url": "https://huggingface.co/bigcode/starcoder2-15b-instruct-v0.1", } QWEN2 = { "type": "qwen2", "name": "Qwen 2", "url": "https://huggingface.co/collections/Qwen/qwen2-6659360b33528ced941e557f", } QWEN2_VL = { "type": "qwen2_vl", "name": "Qwen 2 VL", "url": "https://huggingface.co/collections/Qwen/qwen2-vl-66cee7455501d7126940800d", } QWEN2_5_VL = { "type": "qwen2_5_vl", "name": "Qwen 2.5 VL", "url": "https://huggingface.co/collections/Qwen/qwen25-66e81a666513e518adb90d9e", } QWEN3 = { "type": "qwen3", "name": "Qwen 3", "url": "https://huggingface.co/collections/Qwen/qwen3-67dd247413f0e2e4f653967f", } QWEN3_MOE = { "type": "qwen3_moe", "name": "Qwen 3 Moe", "url": "https://huggingface.co/collections/Qwen/qwen3-67dd247413f0e2e4f653967f", } GALACTICA = { "type": "galactica", "name": "Galactica", "url": "https://huggingface.co/facebook/galactica-120b", } SANTACODER = { "type": "santacoder", "name": "SantaCoder", "url": "https://huggingface.co/bigcode/santacoder", } GPT2 = { "type": "gpt2", "name": "Gpt2", "url": "https://huggingface.co/openai-community/gpt2", } GPT_NEOX = { "type": "gpt_neox", "name": "Gpt Neox", "url": "https://huggingface.co/EleutherAI/gpt-neox-20b", } GPTJ = { "type": "gptj", "name": "Gptj", "url": "https://huggingface.co/EleutherAI/gpt-j-6b", } MLLAMA = { "type": "mllama", "name": "Mllama", "url": "https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct", "multimodal": True, } __GLOBALS = locals() for data in ModelType: __GLOBALS[data.name] = data.value["type"] SDP_ON_BF16 = int(os.environ.get("SDP_ON_BF16", 0)) # Disable gradients torch.set_grad_enabled(False) def get_model( model_id: str, lora_adapter_ids: Optional[List[str]], revision: Optional[str], sharded: bool, quantize: Optional[str], speculate: Optional[int], dtype: Optional[torch.dtype], kv_cache_dtype: Optional[str], trust_remote_code: bool, max_input_tokens: int, ) -> Model: global FLASH_ATTENTION if speculate is not None: set_speculate(speculate) else: set_speculate(0) config_dict, _ = PretrainedConfig.get_config_dict( model_id, revision=revision, trust_remote_code=trust_remote_code ) model_type = config_dict.get("model_type", None) speculator = None if "medusa_num_heads" in config_dict: medusa_model_id = model_id medusa_revision = revision model_id = config_dict["base_model_name_or_path"] revision = "main" speculate_medusa = config_dict["medusa_num_heads"] if speculate is not None: if speculate > speculate_medusa: raise RuntimeError( f"Speculate is set to `{speculate}` but this medusa models only has `{speculate_medusa}` heads, please make them match" ) else: set_speculate(speculate) else: set_speculate(speculate_medusa) config_dict, _ = PretrainedConfig.get_config_dict( model_id, revision=revision, trust_remote_code=trust_remote_code ) # Reload model type from parent. model_type = config_dict.get("model_type", None) is_local = Path(medusa_model_id).exists() if not is_local: medusa_config = hf_hub_download( medusa_model_id, revision=medusa_revision, filename="config.json" ) hf_hub_download( medusa_model_id, revision=medusa_revision, filename="medusa_lm_head.safetensors", ) speculator = { "path": Path(medusa_config).parent, "model_paths": ["medusa_lm_head.safetensors"], } else: speculator = { "path": Path(medusa_model_id), "model_paths": ["medusa_lm_head.safetensors"], } method = "medusa" elif model_type == "mlp_speculator": mlp_model_id = model_id mlp_revision = revision model_id = config_dict["base_model_name_or_path"] revision = "main" speculate_mlp = config_dict["n_predict"] if speculate is not None: if speculate > speculate_mlp: raise RuntimeError( f"Speculate is set to `{speculate}` but this mlp_speculator models only has `{speculate_mlp}` heads, please make them match" ) else: set_speculate(speculate) else: set_speculate(speculate_mlp) config_dict, _ = PretrainedConfig.get_config_dict( model_id, revision=revision, trust_remote_code=trust_remote_code ) # Reload model type from parent. model_type = config_dict.get("model_type", None) is_local = Path(mlp_model_id).exists() extension = ".safetensors" if not is_local: mlp_speculator_config = hf_hub_download( mlp_model_id, revision=mlp_revision, filename="config.json" ) api = HfApi() info = api.model_info(mlp_model_id, revision=mlp_revision) filenames = [ s.rfilename for s in info.siblings if s.rfilename.endswith(extension) and len(s.rfilename.split("/")) == 1 and "arguments" not in s.rfilename and "args" not in s.rfilename and "training" not in s.rfilename ] for filename in filenames: hf_hub_download( mlp_model_id, revision=mlp_revision, filename=filename, ) speculator_dir_path = Path(mlp_speculator_config).parent # if these are downloaded, they get converted to safetensors filenames.extend( [p for p in os.listdir(speculator_dir_path) if p.endswith(extension)] ) speculator = { "path": Path(mlp_speculator_config).parent, "model_paths": filenames, } else: speculator = Path(mlp_model_id) filenames = [p for p in os.listdir(speculator) if p.endswith(extension)] speculator = {"path": speculator, "model_paths": filenames} method = "mlp_speculator" else: method = "n-gram" speculate = get_speculate() if speculate > 0: logger.info(f"Using speculation {method} with {speculate} input ids.") model_type = config_dict["model_type"] if kv_cache_dtype == "fp8_e4m3fn": kv_cache_dtype = torch.float8_e4m3fn elif kv_cache_dtype == "fp8_e5m2": kv_cache_dtype = torch.float8_e5m2 else: kv_cache_dtype = dtype if FLASH_ATTENTION: if model_type == DEEPSEEK_V2: head_size = max( config_dict.get("qk_nope_dim", 128) + config_dict.get("qk_rope_dim", 64), config_dict.get("v_head_dim", 128), ) return FlashCausalLM( model_id=model_id, model_class=FlashDeepseekV2ForCausalLM, revision=revision, quantize=quantize, speculator=speculator, default_dtype=torch.bfloat16, dtype=dtype, kv_cache_dtype=kv_cache_dtype, trust_remote_code=trust_remote_code, lora_adapter_ids=lora_adapter_ids, config_class=DeepseekV2Config, head_size=head_size, ) elif model_type == DEEPSEEK_V3: head_size = max( config_dict.get("qk_nope_dim", 128) + config_dict.get("qk_rope_dim", 64), config_dict.get("v_head_dim", 128), ) return FlashCausalLM( model_id=model_id, model_class=FlashDeepseekV3ForCausalLM, revision=revision, quantize=quantize, speculator=speculator, default_dtype=torch.bfloat16, dtype=dtype, kv_cache_dtype=kv_cache_dtype, trust_remote_code=trust_remote_code, lora_adapter_ids=lora_adapter_ids, config_class=DeepseekV3Config, head_size=head_size, ) elif ( model_type == GPT_BIGCODE or model_type == GPT2 and model_id.startswith("bigcode/") ): return FlashCausalLM( model_id=model_id, model_class=FlashSantacoderForCausalLM, revision=revision, quantize=quantize, speculator=speculator, dtype=dtype, kv_cache_dtype=kv_cache_dtype, trust_remote_code=trust_remote_code, lora_adapter_ids=lora_adapter_ids, aliases={"transformer.wte.weight": ["lm_head.weight"]}, num_kv_heads=1, ) elif model_type == GPT2: return FlashCausalLM( model_id=model_id, model_class=FlashGPT2ForCausalLM, revision=revision, quantize=quantize, speculator=speculator, dtype=dtype, kv_cache_dtype=kv_cache_dtype, trust_remote_code=trust_remote_code, lora_adapter_ids=lora_adapter_ids, ) elif model_type == GPTJ: return FlashCausalLM( model_id=model_id, model_class=FlashGPTJForCausalLM, revision=revision, quantize=quantize, speculator=speculator, dtype=dtype, kv_cache_dtype=kv_cache_dtype, trust_remote_code=trust_remote_code, lora_adapter_ids=lora_adapter_ids, ) elif model_type == GPT_NEOX: from text_generation_server.models.custom_modeling.flash_neox_modeling import ( GPTNeoXConfig, ) return FlashCausalLM( model_id=model_id, model_class=FlashGPTNeoXForCausalLM, revision=revision, quantize=quantize, speculator=speculator, dtype=dtype, kv_cache_dtype=kv_cache_dtype, trust_remote_code=trust_remote_code, lora_adapter_ids=lora_adapter_ids, config_class=GPTNeoXConfig, ) elif model_type == PHI: return FlashCausalLM( model_id=model_id, model_class=FlashPhiForCausalLM, revision=revision, quantize=quantize, speculator=speculator, dtype=dtype, kv_cache_dtype=kv_cache_dtype, trust_remote_code=trust_remote_code, lora_adapter_ids=lora_adapter_ids, ) elif model_type == PHI_MOE: return FlashCausalLM( model_id=model_id, model_class=FlashLlamaForCausalLM, config_class=PhiMoEConfig, revision=revision, quantize=quantize, speculator=speculator, dtype=dtype, kv_cache_dtype=kv_cache_dtype, trust_remote_code=trust_remote_code, lora_adapter_ids=lora_adapter_ids, ) elif model_type == LLAMA or model_type == PHI3 or model_type == GRANITE: return FlashCausalLM( model_id=model_id, model_class=FlashLlamaForCausalLM, revision=revision, quantize=quantize, speculator=speculator, dtype=dtype, kv_cache_dtype=kv_cache_dtype, trust_remote_code=trust_remote_code, lora_adapter_ids=lora_adapter_ids, ) elif model_type == LLAMA4: print(f"Llama4 model detected: {model_id}") return FlashVlmCausalLM( model_id=model_id, model_class=Llama4ForConditionalGeneration, revision=revision, quantize=quantize, speculator=speculator, dtype=dtype, kv_cache_dtype=kv_cache_dtype, default_dtype=torch.bfloat16, trust_remote_code=trust_remote_code, lora_adapter_ids=lora_adapter_ids, support_chunking=False, ) elif model_type == BAICHUAN: return FlashCausalLM( model_id=model_id, model_class=FlashLlamaForCausalLM, revision=revision, quantize=quantize, speculator=speculator, dtype=dtype, kv_cache_dtype=kv_cache_dtype, trust_remote_code=trust_remote_code, lora_adapter_ids=lora_adapter_ids, ) elif model_type == GEMMA: return FlashCausalLM( model_id=model_id, model_class=FlashGemmaForCausalLM, revision=revision, quantize=quantize, speculator=speculator, dtype=dtype, kv_cache_dtype=kv_cache_dtype, # Works better for these models default_dtype=torch.bfloat16, trust_remote_code=trust_remote_code, lora_adapter_ids=lora_adapter_ids, ) elif model_type == GEMMA2: return FlashCausalLM( model_id=model_id, model_class=FlashGemma2ForCausalLM, revision=revision, quantize=quantize, speculator=speculator, dtype=dtype, kv_cache_dtype=kv_cache_dtype, # Works better for these models default_dtype=torch.bfloat16, trust_remote_code=trust_remote_code, lora_adapter_ids=lora_adapter_ids, ) elif model_type == GEMMA3: return FlashVlmCausalLM( model_id=model_id, model_class=Gemma3ForConditionalGeneration, revision=revision, quantize=quantize, speculator=speculator, dtype=dtype, kv_cache_dtype=kv_cache_dtype, default_dtype=torch.bfloat16, trust_remote_code=trust_remote_code, lora_adapter_ids=lora_adapter_ids, support_chunking=False, ) elif model_type == GEMMA3_TEXT: return FlashCausalLM( model_id=model_id, model_class=FlashGemma3ForCausalLM, revision=revision, quantize=quantize, speculator=speculator, dtype=dtype, kv_cache_dtype=kv_cache_dtype, # Works better for these models default_dtype=torch.bfloat16, trust_remote_code=trust_remote_code, lora_adapter_ids=lora_adapter_ids, ) elif model_type == COHERE: return FlashCausalLM( model_id=model_id, model_class=FlashCohereForCausalLM, revision=revision, quantize=quantize, speculator=speculator, dtype=dtype, kv_cache_dtype=kv_cache_dtype, trust_remote_code=trust_remote_code, lora_adapter_ids=lora_adapter_ids, ) elif model_type == DBRX: return FlashCausalLM( model_id=model_id, model_class=FlashDbrxForCausalLM, revision=revision, quantize=quantize, speculator=speculator, dtype=dtype, kv_cache_dtype=kv_cache_dtype, # Dbrx works better in bfloat16. default_dtype=torch.bfloat16, trust_remote_code=trust_remote_code, lora_adapter_ids=lora_adapter_ids, config_class=DbrxConfig, ) elif ( model_type in ["RefinedWeb", "RefinedWebModel", FALCON] and not sharded and not config_dict.get("alibi", False) ): return FlashCausalLM( model_id=model_id, model_class=FlashRWForCausalLM, revision=revision, quantize=quantize, speculator=speculator, dtype=dtype, kv_cache_dtype=kv_cache_dtype, aliases={ "lm_head.weight": ["transformer.word_embeddings.weight"], "transformer.word_embeddings.weight": ["lm_head.weight"], }, trust_remote_code=trust_remote_code, lora_adapter_ids=lora_adapter_ids, config_class=RWConfig, ) elif model_type == MISTRAL: return FlashCausalLM( model_id=model_id, model_class=FlashMistralForCausalLM, revision=revision, quantize=quantize, speculator=speculator, dtype=dtype, kv_cache_dtype=kv_cache_dtype, trust_remote_code=trust_remote_code, lora_adapter_ids=lora_adapter_ids, ) elif model_type == MIXTRAL: return FlashCausalLM( model_id=model_id, model_class=FlashMixtralForCausalLM, revision=revision, quantize=quantize, speculator=speculator, dtype=dtype, kv_cache_dtype=kv_cache_dtype, trust_remote_code=trust_remote_code, lora_adapter_ids=lora_adapter_ids, ) elif model_type == STARCODER2: return FlashCausalLM( model_id=model_id, model_class=FlashStarcoder2ForCausalLM, revision=revision, quantize=quantize, speculator=speculator, dtype=dtype, kv_cache_dtype=kv_cache_dtype, trust_remote_code=trust_remote_code, lora_adapter_ids=lora_adapter_ids, ) elif model_type == QWEN2: return FlashCausalLM( model_id=model_id, model_class=Qwen2ForCausalLM, revision=revision, quantize=quantize, speculator=speculator, dtype=dtype, kv_cache_dtype=kv_cache_dtype, trust_remote_code=trust_remote_code, lora_adapter_ids=lora_adapter_ids, ) elif model_type == QWEN2_VL: return FlashVlmCausalLM( model_id=model_id, model_class=Qwen2VLForConditionalGeneration, revision=revision, quantize=quantize, speculator=speculator, dtype=dtype, default_dtype=torch.bfloat16, kv_cache_dtype=kv_cache_dtype, trust_remote_code=trust_remote_code, lora_adapter_ids=lora_adapter_ids, # TODO: Fix bug in rust image_text_replacement implementation support_chunking=False, ) elif model_type == QWEN2_5_VL: return FlashVlmCausalLM( model_id=model_id, model_class=Qwen2_5VLForConditionalGeneration, revision=revision, quantize=quantize, speculator=speculator, dtype=dtype, default_dtype=torch.bfloat16, kv_cache_dtype=kv_cache_dtype, trust_remote_code=trust_remote_code, lora_adapter_ids=lora_adapter_ids, config_class=Qwen2_5_VLConfig, processor_class=Qwen2_5_VLProcessor, # TODO: Fix bug in rust image_text_replacement implementation support_chunking=False, ) elif model_type == QWEN3: return FlashCausalLM( model_id=model_id, model_class=Qwen3ForCausalLM, revision=revision, quantize=quantize, speculator=speculator, dtype=dtype, kv_cache_dtype=kv_cache_dtype, trust_remote_code=trust_remote_code, lora_adapter_ids=lora_adapter_ids, ) elif model_type == QWEN3_MOE: return FlashCausalLM( model_id=model_id, model_class=Qwen3MoeForCausalLM, revision=revision, quantize=quantize, speculator=speculator, dtype=dtype, kv_cache_dtype=kv_cache_dtype, trust_remote_code=trust_remote_code, lora_adapter_ids=lora_adapter_ids, ) elif model_type == MLLAMA: return FlashMllamaCausalLM( model_id=model_id, model_class=FlashMllamaForConditionalGeneration, batch_class=FlashMllamaCausalLMBatch, revision=revision, quantize=quantize, speculator=speculator, dtype=dtype, default_dtype=torch.bfloat16, trust_remote_code=trust_remote_code, lora_adapter_ids=lora_adapter_ids, support_chunking=False, ) elif model_type == IDEFICS2: return FlashVlmCausalLM( model_id=model_id, model_class=Idefics2ForConditionalGeneration, revision=revision, quantize=quantize, speculator=speculator, dtype=dtype, kv_cache_dtype=kv_cache_dtype, trust_remote_code=trust_remote_code, lora_adapter_ids=lora_adapter_ids, # XXX: Extremely important to cap resolution in order to limit # VRAM usage. processor_kwargs={"size": {"longest_edge": 448, "shortest_edge": 378}}, ) elif model_type == IDEFICS3: return FlashVlmCausalLM( model_id=model_id, model_class=Idefics3ForConditionalGeneration, revision=revision, quantize=quantize, speculator=speculator, dtype=dtype, kv_cache_dtype=kv_cache_dtype, default_dtype=torch.bfloat16, trust_remote_code=trust_remote_code, lora_adapter_ids=lora_adapter_ids, # XXX: Extremely important to cap resolution in order to limit # VRAM usage. processor_kwargs={"size": {"longest_edge": 1456}}, ) elif model_type == PALIGEMMA: return FlashVlmCausalLM( model_id=model_id, model_class=PaliGemmaForConditionalGeneration, revision=revision, quantize=quantize, speculator=speculator, dtype=dtype, kv_cache_dtype=kv_cache_dtype, # Works better for these models default_dtype=torch.bfloat16, trust_remote_code=trust_remote_code, lora_adapter_ids=lora_adapter_ids, ) elif model_type == LLAVA_NEXT: return FlashVlmCausalLM( model_class=FlashLlavaNextForConditionalGeneration, model_id=model_id, revision=revision, quantize=quantize, speculator=speculator, dtype=dtype, kv_cache_dtype=kv_cache_dtype, trust_remote_code=trust_remote_code, ) raise ValueError(f"Unsupported model type {model_type}") # get_model_with_lora_adapters wraps the internal get_model function and adds support for loading adapters # this provides a post model loading hook to load adapters into the model after the model has been loaded def get_model_with_lora_adapters( model_id: str, lora_adapters: Optional[List[AdapterInfo]], revision: Optional[str], sharded: bool, quantize: Optional[str], speculate: Optional[int], dtype: Optional[torch.dtype], kv_cache_dtype: Optional[str], trust_remote_code: bool, max_input_tokens: int, adapter_to_index: Dict[str, int], ): lora_adapter_ids = [adapter.id for adapter in lora_adapters] model = get_model( model_id, lora_adapter_ids, revision, sharded, quantize, speculate, dtype, kv_cache_dtype, trust_remote_code, max_input_tokens, ) if len(lora_adapters) > 0: target_to_layer = build_layer_weight_lookup(model.model) for index, adapter in enumerate(lora_adapters): # The AdapterParameters object allows for merging multiple adapters into a single adapter. # At the moment, we only support loading a single adapter into the model, but we keep the # AdapterParameters object for easier extension in the future. adapter_parameters = AdapterParameters( adapter_info=[adapter], # when merging multiple adapters we can weight them differently # if this is not set, all adapters will be weighted equally # see: text_generation_server.utils.merges.strategies for impl weights=None, merge_strategy=0, density=1.0, majority_sign_method=0, ) adapter_index = index + 1 adapter_to_index[adapter.id] = adapter_index logger.info( f"Loading adapter weights into model: {','.join([adapter.id for adapter in adapter_parameters.adapter_info])}" ) weight_names = tuple([v[0] for v in target_to_layer.values()]) ( module_map, adapter_config, adapter_weight_names, adapter_tokenizer, ) = load_and_merge_adapters( model.model_id, adapter_parameters, adapter_index, weight_names, False, ) unused_weight_names = adapter_weight_names.copy() adapter_layers = [ "q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj", "qkv_proj", ] for layer_name in adapter_layers: nlayers = ( 1 if layer_name == "lm_head" else len(model.model.model.layers) ) adapter_weights = LoraWeights.prepare_weights( config=adapter_config, module_map=module_map, layer_type=layer_name, unused_weight_names=unused_weight_names, nlayers=nlayers, dtype=model.dtype, world_size=model.world_size, process_group=model.process_group, target_to_layer=target_to_layer, ) if adapter_weights is None: continue model.layer_to_adapter_weights[layer_name].add_adapter( adapter_index, adapter_weights ) if len(unused_weight_names) > 0: logger.warning( f"{','.join([a.id for a in lora_adapters])} unused adapter weights: {unused_weight_names}" ) if adapter_tokenizer is not None: model.tokenizers.add_tokenizer(adapter_index, adapter_tokenizer) model.loaded_adapters.add(adapter_index) return model